To get the percent yield, we will use this formula:
((Actual Yield)/(Theoretical Yield)) * 100%
Values given: actual yield is 220.0 g
theoretical yield is 275.6 g
Now, let us substitute the values given.
(220.0 grams)/(275.6 grams) = 0.7983
Then, to get the percentage, multiply the quotient by 100.
0.7983 (100) = 79.83%
Among the choices, the most plausible answer is 79.8%
<span>
</span>
D. precision. At first glance you can mark out A and B because the answers does not relate to the question. If question had said "what do you call it when the measurement is close to the actual answer" then you would have picked C. So that leaves you D. precision.
Answer:
(molecular) 3 CaCl₂(aq) + 2 (NH₄)₃PO₄(aq) ⇄ Ca₃(PO₄)₂(s) + 6 NH₄Cl(aq)
(ionic) 3 Ca²⁺(aq) + 6 Cl⁻(aq) + 6 NH₄⁺(aq) + 2 PO₄³⁻(aq) ⇄ Ca₃(PO₄)₂(s) + 6 NH₄⁺(aq) + 6 Cl⁻(aq)
(net ionic) 3 Ca²⁺(aq) + 2 PO₄³⁻(aq) ⇄ Ca₃(PO₄)₂(s)
Explanation:
The molecular equation includes al the species in the molecular form.
3 CaCl₂(aq) + 2 (NH₄)₃PO₄(aq) ⇄ Ca₃(PO₄)₂(s) + 6 NH₄Cl(aq)
The ionic equation includes all the ions (species that dissociate in water) and the species that do not dissociate in water.
3 Ca²⁺(aq) + 6 Cl⁻(aq) + 6 NH₄⁺(aq) + 2 PO₄³⁻(aq) ⇄ Ca₃(PO₄)₂(s) + 6 NH₄⁺(aq) + 6 Cl⁻(aq)
The net ionic equation includes only the ions that participate in the reaction and the species that do not dissociate in water. In does not include <em>spectator ions</em>.
3 Ca²⁺(aq) + 2 PO₄³⁻(aq) ⇄ Ca₃(PO₄)₂(s)
The
equation for the photosynthesis reaction in which carbon dioxide and water
react to form glucose is .
The hear reaction is the difference between the bond dissociation energies in
the products and the bond dissociation energies of the reactants
The
reactant molecules have 12 C = O, 12 H - O bonds while the product molecules
have 5 C - C, 7 C – O, 5 H – O, and 6 O = O bonds. The average bond
dissociation energies for the bonds involved in the reaction are 191 for C = O,
112 for H – O, 83 C –C, 99 C – H, 86 C – O, 119 O = O.
Substitute
the average bond dissociation energies in the equation for and
calculate as follows
=
[12 (C=O) + 12 (H-O)] – [5(C-C) + 7(C-H) + 7 (C-O) + 5(H-O) + 6(O=O)]
=
[12x191 kcal/mol + 12x112 kcal//mol] – [5x83 kcal/mol + 7x99 kcal/mol + 7x86
kcal/mol + 5x112 kcal/mol + 6x119 kcal/mol]
=
3636 kcal/mol – 2984 kcal/mol = 652 kcal/mol x 4.184 Kj/1kcal = 2.73x10^3 kJ/mol
So,
enthalpy change for the reaction is 652 kcal/mol or 2.73x10^3 kJ/mol
<span> </span>
Answer:
43.89 min
Explanation:
Given that:-
The speed of light = 
The distance = 
The conversion of distance in km to distance into m is shown below as:-
1 km = 1000 m
So,
Distance = 
The relation between speed distance and time is shown below as:-

Thus,


Time = 2633.33 seconds
Also, 1 s = 1/60 min
So,
Time=