Answer:
The spring constant of this spring is 200 N/m.
Explanation:
Given:
Original unstretched length of the spring (x₀) = 10 cm =0.10 m [1 cm =0.01 m]
Stretched length of the spring (x₁) = 18 cm = 0.18 cm
Force acting on the spring (F) = 16 N
Spring constant of the spring (k) = ?
First let us find the change in length of the spring or the elongation caused in the spring due to the applied force.
So, Change in length = Final length - Initial length

Now, restoring force acting on the spring is directly related to its elongation or compression as:

Rewriting in terms of 'k', we get:

Now, plug in the given values and solve for 'k'. This gives,

Therefore, the spring constant of this spring is 200 N/m.
Answer:
They are temperature, atmospheric pressure, wind, humidity, precipitation, and cloudiness. Together, these components describe the weather at any given time.
Answer:
mechanical
Explanation:
the energy is carried by water <3 hope this helped
M = 30 g = 0.03 kg, the mass of the bullet
v = 500 m/s, the velocity of the bullet
By definition, the KE (kinetic energy) of the bullet is
KE = (1/2)*m*v²
= 0.5*(0.03 kg)*(500 m/s)² = 3750 J
Because the bullet comes to rest, the change in mechanical energy is 3750 J.
The work done by the wall to stop the bullet in 12 cm is
W = (1/2)*(F N)*(0.12 m) = 0.06F J
If energy losses in the form of heat or sound waves are ignored, then
W = KE.
That is,
0.06F = 3750
F = 62500 N = 62.5 kN
Answer:
(a) 3750 J
(b) 62.5 kN
Answer:
6,600N
Explanation:
According to second law of motion, Force = mass × acceleration
If acceleration = change in velocity/time = 15/0.10
Acceleration = 150m/s²
Given mass = 44kg
Force = 44× 150
Force = 6,600N
Magnitude of the average force exerted on the passenger during this time is 6,600N