Carbohydrates are biological molecules made of carbon, hydrogen, and oxygen in a ratio of roughly one carbon atom (
C
Cstart text, C, end text) to one water molecule (
H
2
O
H
2
Ostart text, H, end text, start subscript, 2, end subscript, start text, O, end text). This composition gives carbohydrates their name: they are made up of carbon (carbo-) plus water (-hydrate). Carbohydrate chains come in different lengths, and biologically important carbohydrates belong to three categories: monosaccharides, disaccharides, and polysaccharides.
Answer:
1.12 × 10⁻⁴ M
Explanation:
Step 1: Write the reaction for the solution of Mg(OH)₂
Mg(OH)₂(s) ⇄ Mg²⁺(aq) + 2 OH⁻(aq)
Step 2: Make an ICE chart
We can relate the solubility product constant (Ksp) with the solubility (S) through an ICE chart.
Mg(OH)₂(s) ⇄ Mg²⁺(aq) + 2 OH⁻(aq)
I 0 0
C +S +2S
E S 2S
The solubility product constant is:
Ksp = 5.61 × 10⁻¹² = [Mg²⁺] × [OH⁻]² = S × (2S)² = 4S³
S = 1.12 × 10⁻⁴ M
Hello,
Here is your answer:
The proper answer to this question is that "e<span>ach sub-level electron type has a unique path where it will likely to be found".
If you need anymore help feel free to ask me!
Hope this helps!</span>
Answer:
Yes
Explanation:
They are a unique type of eukaryote because they lack an important organelle: mitochondria. Mitochondria are essential for producing cellular energy in most eukaryotic cells. However, due to its habitat, it is able to acquire energy from a process called sulfur mobilization.
They are significant because they challenge the idea that eukaryotes need mitochondria to be classified as eukaryotic. However, they have other membrane-bound organelles such as a nucleus and Golgi apparatus, meaning they remain eukaryotic.
Research suggest they lost their mitochondria over time, rather than never having had them throughout their ancestry.
Because of all these reasons, they still meet the definition of a eukaryote.
Answer:
Look below
Explanation:
The formula for density is:

Therefore in order to find the density of a solid, you must find the mass and the volume first.
To find the mass, you can use a scale.
To find the volume, you can use the water displacement method. For example, if you fill the water of a graduated cylinder to 10 mL, and then you put a rock inside, and it rises to 15 mL, then the volume (of the rock) is 15mL-10mL=5mL.