Answer:
B. It is a nonliving resource.
Explanation:
The definition of abiotic is "nonliving," and examples of abiotic resources may include soil or water.
solution:
You need to find the frequency, and they have already given you the wavelength. And since you already know the speed of light, you can use formula (2) to answer this problem. Remember to convert the nano meters to meters because the speed of light is in meters. 

Answer:
You answer is correct
Electrons have a negative charge. The charge on the proton and electron are exactly the same size but opposite. Neutrons have no charge.
Thank you and please rate me as brainliest as it will help me to level up
Answer:
The most important ore of aluminum is<u> Bauxite.</u>
And its chemical formula is
.
Explanation:
Bauxite is the most important ore of Aluminium from which Aluminium is extracted. Bauxite is a rock and composed of Aluminium bearing mineral.
And its chemical formula is
.
It contains Gibbsite, Bohmite and Diaspore along with iron.
It is a soft material with somewhat white to grey to reddish brown in colour.
It has an earthy lustre and low specific gravity.
<u />
Answer:
Mass = 42.8g
Explanation:
4 NH 3 ( g ) + 5 O 2 ( g ) ⟶ 4 NO ( g ) + 6 H 2 O ( g )
Observe that every 4 mole of ammonia requires 5 moles of oxygen to obtain 4 moles of Nitrogen oxide and 6 moles of water.
Step 1: Determine the balanced chemical equation for the chemical reaction.
The balanced chemical equation is already given.
Step 2: Convert all given information into moles (through the use of molar mass as a conversion factor).
Ammonia = 63.4g × 1mol / 17.031 g = 3.7226mol
Oxygen = 63.4g × 1mol / 32g = 1.9813mol
Step 3: Calculate the mole ratio from the given information. Compare the calculated ratio to the actual ratio.
If all of the 1.9831 moles of oxygen were to be used up, there would need to be 1.9831 × 4 / 5 or 1.5865 moles of Ammonia. We have 3.72226 moles of ammonia - Far excess. Because there is an excess of Ammonia, the Oxygen amount is used to calculate the amount of the products in the reaction.
Step 4: Use the amount of limiting reactant to calculate the amount of H2O produced.
5 moles of O2 = 6 moles of H2O
1.9831 moles = x
x = (1.9831 * 6 ) / 5
x = 2.37972 moles
Mass of H2O = Molar mass * Molar mass
Mass = 2.7972 * 18
Mass = 42.8g