When you’re driving on the freeway it’s necessary to keep your foot on the accelerator to keep the car moving at a constant speed. In this situation the net force on the car is zero.
The rate of change of the velocity of a particle with respect to time is called its acceleration. If the velocity of the particle changes at a constant rate, then this rate is called the constant acceleration.
Since we are using metres and seconds as our basic units, we will measure acceleration in metres per second per second. This will be abbreviated as m/s². It is also commonly abbreviated as ms⁻².
For example, if the velocity of a particle moving in a straight line changes uniformly (at a constant rate of change) from 2 m/s to 5 m/s over one second, then its constant acceleration is 3 m/s².
Zero acceleration means constant velocity. Also to be noticed is that the definition of acceleration does not involve any information about forces. Acceleration is a kinematic quantity. Irrespective of what forces are acting, if the velocity is constant, the acceleration is zero.
Learn more about acceleration here : brainly.com/question/605631
#SPJ4
Since we're dealing with radial acceleration around a circle, I used the radial acceleration equation a=v²/r. At the top of the hill, the force upward exerted by the hill is less than the weight of the sled. if v is large enough the term (g-v²/r) will become 0 and the sled will fly off the ground as it reaches the peak. Let me know if I can clarify any of my work.
Answer:
Kindly find the graphs attached
Explanation:
For figure 1: There is a steady increase in the position of the object as time increases. This is because despite the negative acceleration (deceleration), the object continues to move and cover more ground as time goes by.
<em>The straight line graph is observed because the acceleration is constant and not varying.</em>
For Figure 2: The graph of velocity vs time will have an inverted nature. This is because since the object is decelerating, it is reducing in its velocity as time goes by (increases). <em>This is also in a straight line since the deceleration is constant.</em>
Answer:
D) not enough information to decide
Explanation:
Data provided in the question
The True weight of book stacks = 165 N
Reading of the scale = 165 N
Constant velocity = 2 m/s upward or downward
Based on the above information
If you moved at a constant velocity the scale interprets the same because of the momentum you've got. The scale will change the number only when acceleration is present.
Therefore in the given situation, the option D is correct as it not have enough information for deciding it