A. Decomposing water requires a high activation energy.
Explanation:
In decomposing water to release hydrogen gas to make fuel cells, the process requires a very high activation energy.
2H₂O ⇆ 2H₂ + O₂
This is the overall reaction. O-H must be broken to release free hydrogen to produce hydrogen gas.
The O-H bond is a very strong force of attraction that requires a high activation energy to overcome.
- The activation energy is the energy barrier that must be overcome before a reaction takes place.
- The sun is a renewable source of energy.
- Water decomposition produces useful oxygen gas needed by all life for cellular respiration.
Learn more:
Source of energy brainly.com/question/2948717
#learnwithBrainly
Answer:
1.72 M
Explanation:
Molarity is the molar concentration of a solution. It can be calculated using the formula a follows:
Molarity = number of moles (n? ÷ volume (V)
According to the information provided in this question, the solution has 58.7 grams of MgCl2 in 359 ml of solution.
Using mole = mass/molar mass
Molar mass of MgCl2 = 24 + 35.5(2)
= 24 + 71
= 95g/mol
mole = 58.7g ÷ 95g/mol
mole = 0.618mol
Volume of solution = 359ml = 359/1000 = 0.359L
Molarity = 0.618mol ÷ 0.359L
Molarity = 1.72 M
Its molecule contains one oxygen and two hydrogen atoms.
Explanation:
Water is a chemical substance with the chemical formula H2O. Water is a chemical substance with the chemical formula H2O. Its molecule contains one oxygen and two hydrogen atoms connected by covalent bonds.
Hope this helps ; )
Since we know that one mole of any gas at STP is equal to 22.4 L we can multiply 135L by the following conversion: 1 mole/22.4L. When you set up the problem it looks like this…: (135L)x 1 mole/22.4L =6.03 moles of oxygen gas The liters cancel out and you are left with moles as your units.
So your answer is then 3.058
Answer: The rate constant for the reaction is 
Explanation:
Expression for rate law for first order kinetics is given by:

where,
k = rate constant
t = age of sample = 559 min
a = let initial amount of the reactant = 
a - x = amount left after decay process = 



The rate constant for the reaction is 