Answer:
The resulting pressure is 3 times the initial pressure.
Explanation:
The equation of state for ideal gases is described below:
(1)
Where:
- Pressure.
- Volume.
- Molar quantity, in moles.
- Ideal gas constant.
- Temperature.
Given that ideal gas is compressed isothermally, this is, temperature remains constant, pressure is increased and volume is decreased, then we can simplify (1) into the following relationship:
(2)
If we know that
, then the resulting pressure of the system is:


The resulting pressure is 3 times the initial pressure.
Well as the fish swims he pushes the water behind him which in return push him forward
The cutoff frequency for magnesium is 8.93 x 10¹⁴ Hz.
<h3>What is cutoff frequency?</h3>
The work function is related to the frequency as
W0 = h x fo
where, fo = cutoff frequency and h is the Planck's constant
Given is the work function for magnesium is 3.70 eV.
fo = 3.7 x 1.6 x 10⁻¹⁹ / 6.626 x 10⁻³⁴
fo = 8.93 x 10¹⁴ Hz.
Thus, the cut off frequency is 8.93 x 10¹⁴ Hz.
Learn more about cutoff frequency.
brainly.com/question/14378802
#SPJ1
Answer:
Shown by explanation;
Explanation:
The heat of the sample = mass ×specific heat capacity of the sample × temperature change(∆T)
Assumption;I assume the mass of the samples are : 109g and 192g
∆T= 30.1-21=8.9°c.
The heat of the samples are for 109g are:
0.109 × 4186 × 8.9 =4060.84J
For 0.192g are;
∆T= 67-30.1-=36.9°c
0.192 × 4186×36.9=29656.97J
The rms current in the transmission lines is I = 487.18 A.
The root-imply-rectangular (rms) voltage of a sinusoidal supply of electromotive force is used to represent the source. it is the rectangular root of the time average of the voltage squared.
Alternating-present day circuits. the root-imply-square (rms) voltage of a sinusoidal source of electromotive force is used to symbolize the supply. it's far the square root of the time average of the voltage squared.
Electric power is by using present day or the waft of electric fee and voltage or the capacity of rate to deliver electricity. A given cost of power can be produced by using any combination of contemporary and voltage values
power = 38 M watt
rms voltage = 78 K v
power = IV
I = power/V
I = (38 * 1000000)/78*1000
I = 487.18 A.
Learn more about rms current here:-brainly.com/question/20913680
#SPJ4