Hi there!
We can use the work-energy theorem to solve.
Recall that:

The initial kinetic energy is 0 J because the crate begins from rest, so we can plug in the given values for mass and final velocity:

Now, we can define work:

Now, plug in the values:

Solve for theta:

Explanation:
The momentum of the three objects are as follow :
11 kg-m/s, -65 kg-m/s and -100 kg-m/s
Before collision, the momentum of the system is :

After collison, they move together. It means it is a case of inelastic collision. In this type of collision, the momentum of the system remains conserved.
It would mean that, after collision, momentum of the system is equal to the initial momentum.
Hence, final momentum = -154 kg-m/s.
Answer:
0.056 psi more pressure is exerted by filled coat rack than an empty coat rack.
Explanation:
First we find the pressure exerted by the rack without coat. So, for that purpose, we use formula:
P₁ = F/A
where,
P₁ = Pressure exerted by empty rack = ?
F = Force exerted by empty rack = Weight of Empty Rack = 40 lb
A = Base Area = 452.4 in²
Therefore,
P₁ = 40 lb/452.4 in²
P₁ = 0.088 psi
Now, we calculate the pressure exerted by the rack along with the coat.
P₂ = F/A
where,
P₂ = Pressure exerted by rack filled with coats= ?
F = Force exerted by filled rack = Weight of Filled Rack = 65 lb
A = Base Area = 452.4 in²
Therefore,
P₂ = 65 lb/452.4 in²
P₂ = 0.144 psi
Now, the difference between both pressures is:
ΔP = P₂ - P₁
ΔP = 0.144 psi - 0.088 psi
<u>ΔP = 0.056 psi</u>
The answer would be flood basalt. This is the outcome
of a huge volcanic eruption or sequence of eruptions that covers large expanses
of land or the ocean floor with basalt lava. The development and
effects of a flood basalt hinge on a variety of factors, like latitude, continental
configuration, rate, volume, period of eruption, the preexisting climate
state, style and location, and the biota flexibility to alteration.