The easiest way I know to explain it is this:
-- Take a flashlight and a ball into a dark room.
-- Turn on the flashlight and point it at the ball.
-- Half of the ball is lighted up by the flashlight, and the other half is dark.
-- There is no way you can turn or twist the ball to make more or less
than 50% of it lighted up and more or less than 50% of it dark.
<em>Everything</em> in the solar system ... as long as it's shaped like a ball ... is
half illuminated by the sun and half dark.
Answer:
The solution(s) are in order with respect to the attachments
Joules ; 5. Adding the same amount of heat to two different objects will produce the same increase in temperature ; 2. Same speed in both ; 2. A
Explanation:
Diagram 1 ( Liquid Nitrogen ) : So as you can see, we want our units in Joules here, and can therefore multiply the mass of gaseous nitrogen and the latent heat of liquid nitrogen, to cancel the units kg, and receive our solution - in terms of Joules. Let's do it.
q ( energy removed ) = mass of nitrogen
latent heat of liquid nitrogen,
q = 1.3 kg
2.01
10⁵ J / kg =
=
=
=
Joules =
kiloJoules = 2.613
10⁵Joules is the energy that must be removed
Diagram 2 : The same amount of heat does not necessarily mean the same increase in temperature for two different objects. The increase in temperature depends on the specific heat capacity of the substance. Therefore your solution is 5 ) Adding the same amount of heat to two different objects will produce the same increase in temperature.
Diagram 3 : The temperatures in both glasses are the same, and hence the molecules have the same average speed. Therefore your solution is 2 ) Same speed in both.
Diagram 4 : Glass A has more water molecules, and hence has more thermal energy. Your solution is 2 ) A.
Fnet =ma
1560)(1.3102)
the answer is b
Answer:
The frequency of the photon is
.
Explanation:
Given that,
Energy
We need to calculate the energy
Using relation of energy

Where,
= energy spacing


Put the value of h into the formula


Hence, The frequency of the photon is
.