Less gas will be collected because some of the gases will escape from the open cylinder valve.
Cylinders used to store carbon dioxide will have thicker walls than those of butane because of higher pressures.
<h3>What are compressed gases?</h3>
Compressed gases are gases which are compressed under high pressure in gas cylinders.
Cylinder valves are used to reduce the pressure of the compressed gases and in the process, some of the gas molecules escape.
Since the cylinder valve is open and the gas is collected at atmospheric pressure, less gas will be collected because some of the gases will escape.
Since, the carbon dioxide not liquefy under pressure compared to butane, the cylinders used to store carbon dioxide will have thicker walls than those of butane.
Learn more about compressed gases at: brainly.com/question/518065
Answer:
1.6 m/s
Explanation:
First you need to find the momentums of each disc by multiplying their velocities with mass.
disc 1: 7*1= 7 kg m/s
disc 2: 1*9= 9 kg m/s
Second, you need to find the total momentum of the system by adding the momentums of each sphere.
9+7= 16 kg m/s
Because momentum is conserved, this is equal to the momentum of the composite body.
Finally, to find the composite body's velocity, divide its total momentum by its mass. This is because mass*velocity=momentum
16/10=1.6
The velocity of the composite body is 1.6 m/s.
Answer:
The value is 
Explanation:
From the question we are told that
The magnitude of the horizontal force is 
The mass of the crate is 
The acceleration of the crate is 
Generally the net force acting on the crate is mathematically represented as

Here
is force of kinetic friction (in N) acting on the crate
So

=> 
Answer:
The electric potential is approximately 5.8 V
The resulting direction of the electric field will lie on the line that joins the charges but since it is calculated in the midpoint and the charges are the same we can directly say that its magnitude is zero
Explanation:
The two protons can be considered as point charges. Therefore, the electric potential is given by the point charge potential:
(1)
where
is the charge of the particle,
the electric permittivity of the vacuum (I assuming the two protons are in a vacuum) and
is the distance from the point charge to the point where the potential is being measured. Because the electric potential is an scalar, we can simply add the contribution of the two potentials in the midpoint between the protons. Thus:

Substituting the values
,
and
we obtain:

The resulting direction of the electric field will lie on the line that joins the charges but since it is calculated in the midpoint and the charges are the same we can directly say that its magnitude is zero.