Answer:
hope this was good for u and I believe it would be solid
Answer:
a) p=0, b) p=0, c) p= ∞
Explanation:
In quantum mechanics the moment operator is given by
p = - i h’ d φ / dx
h’= h / 2π
We apply this equation to the given wave functions
a) φ =
.d φ dx = i k
We replace
p = h’ k
i i = -1
The exponential is a sine and cosine function, so its measured value is zero, so the average moment is zero
p = 0
b) φ = cos kx
p = h’ k sen kx
The average sine function is zero,
p = 0
c) φ =
d φ / dx = -a 2x
.p = i a g ’2x
The average moment is
p = (p₂ + p₁) / 2
p = i a h ’(-∞ + ∞)
p = ∞
Answer: n = c / v" "c" is the speed of light in a vacuum, "v" is the speed of light in that substance and "n" is the index of refraction. According to the formula, the index of refraction is the relation between the speed of light in a vacuum and the speed of light in a substance.
Explanation: the relation is the vacuum and the speed of light in a substance.
Answer:
A and c, hope i helped xx
Explanation:
We must remember that the total net force equation at
constant velocity is:
<span>F – Ff = 0</span>
of
F - µN = 0
Using Newton's 2nd Law of Motion:<span>
F = m a
<span>Where,
F = net force acting on the body
m = mass of the body
a = acceleration of the body
Since the cart is moving at a constant velocity, then
acceleration is zero, hence the working equation simplifies to
F = net Force = 0
Therefore,
F - µN = 0
where
µ = coefficient of friction = 0.20
N = normal force acting on the cart = 12 N
Therefore,
F - 0.20(12) = 0
<span>
F = 2.4 N </span></span></span>