You could attach the pulley to a secure object on the top of the ramp, and crank the pulley to bring the wagon up said ramp into a loading bay perhaps, or a track.
Hope I helped.
I believe that the answer is B. 133 N
Answer:
i believe its 26.7
Explanation:
if the runner goes 8.9 m/s each second while accelerating for 3 seconds to reach top speed, the top speed would be 26.7 m/s
No. Mechanical energy is not conserved. There's quite a bit of friction on the slide. So some of the potential energy is lost to heat on the way down, and the child arrives at the bottom with hot pants and less kinetic energy than you might expect.
Solution :
Given :
M = 0.35 kg

Total mechanical energy = constant
or 
But
and 
Therefore, potential energy at the top = kinetic energy at the bottom


(h = 35 cm = 0.35 m)
= 2.62 m/s
It is the velocity of M just before collision of 'm' at the bottom.
We know that in elastic collision velocity after collision is given by :

here, 
∴ 

= 0.33 m/s
Therefore, velocity after the collision of mass M = 0.33 m/s