Answer: 1. 2.7 moles of ammonia are formed
2. 12.0 moles of hydrogen are required
3. 2.0 moles of nitrogen are required
Explanation:
The balanced chemical equation is:

According to stoichiometry:
3 moles of hydrogen form = 2 moles of ammonia
Thus 4.0 moles of hydrogen form =
of ammonia
According to stoichiometry:
2 moles of ammonia are formed by = 3 moles of hydrogen
Thus 8.0 moles of ammonia are formed by =
of hydrogen
According to stoichiometry:
3 moles of hydrogen react with = 1 mole of nitrogen
Thus 6.0 moles of hydrogen react with =
of nitrogen
The rounding up of the aforementioned number to four significant figures is as follows: 3.002 × 10²
<h3>What are significant figures?</h3>
Significant figures are figures that contribute to the general and overall value of the whole number.
Significant figures or digits are specifically meaningful with respect to the precision of a measurement.
Although, the original number given in this question has 9 significant figures, the number; 300.235800 can be rounded up to four significant figures as follows:
- Decimal notation: 300.2
- No. of significant figures: 4
- No. of decimals: 1
- Scientific notation: 3.002 × 10²
Therefore, the rounding up of the aforementioned number to four significant figures is as follows: 3.002 × 10².
Learn more about significant figures at: brainly.com/question/14359464
#SPJ1
Answer:
The student's conclusion is not correct
Explanation:
Activation energy is the minimum amount of energy required for a reaction to occur. All reactions require there activation energy to be met before the reaction can proceed. When the temperature of a reaction is increased, the kinetic energy of the reactant molecules increases; colliding more with each other, which makes them "surmount" the activation energy of the reaction faster as compared to a lower temperature.
In combustion, there is burning of an hydrocarbon (in this case propane) in excess oxygen. The burning assists in increasing the kinetic energy of the reactant particles which in turn easily surmounts the activation energy of the reaction by colliding (effective collision) more with oxygen. So, the reaction has an activation energy but the activation energy has been met and passed and hence the reaction is proceeding faster.
Increasing the temperature of a reaction is one of the ways of increasing the rate of a chemical reaction.
If an atom suffers from a collision, that causes an electron to jump from a lower to higher state, it is called collisional excitation
Answer:
The correct answer is 199.66 grams per mole.
Explanation:
Based on law of effusion given by Graham, a gas rate of effusion is contrariwise proportionate to the square root of molecular mass, that is, rate of effusion of gas is inversely proportional to the square root of mass. Therefore,
R1/R2 = √ M2/√ M1
Here rate is the rate of effusion of the gas expressed in terms of number of mole per uni time or volume, and M is the molecular mass of the gas.
Rate Q/Rate N2 = √M of N2/ √M of Q
The molecular mass of N2 or nitrogen gas is 28 grams per mole and M of Q is molecular mass of Q and based on the question Q needs 2.67 times more to effuse in comparison to nitrogen gas, therefore, rate of Q = rate of N2/2.67
Now putting the values we get,
rate of N2/2.67/rate of N2 = √28/ √M of Q
√M of Q = √ 28 × 2.67
M of Q = (√ 28 × 2.67)²
M of Q = 199.66 grams per mole