Answer:
Sedimentary rock, rock formed at or near Earth's surface by the accumulation and lithification of sediment by the precipitation from solution at normal surface temperatures
Explanation:
D = m / V
It even gives you the density of gold in the problem. Major hint. Once you know the volume (using V = m / D) then you can calculate the height (thickness) from the equation...
V = L x W x H
Volume = Length x Width x Height
start by converting 200.0 mg into grams
1000 mg = 1 g
200. mg x (1 g / 10^3 mg) = 0.200 g
V = m / D
V = 0.200 g / (19.32 g/cm^3)
V = 0.01035 cm^3
Convert 2.4 ft and 1 ft to cm
2.4 ft x (12 in / 1 ft) x (2.54 cm / 1 in) = 73.15 cm
1 ft = 30.48 cm
Compute the height (thickness)
V = LxWxH
H = V / LW = 0.01035 cm^3 / 73.15 cm / 30.48 cm
H = 4.64 x 10^-6 cm
Convert to nanometers
4.64 x 10^-6 cm x (1 m / 100 cm) x (10^9 nm / 1 m) = 46.4 nm
Knowing the atomic radius of gold, I might have asked my students for the minimum number of gold atoms in this thickness of gold. This would assume that the gold atoms are all in a row. This would give the minimum number of gold atoms.
Atomic radius gold = 174 pm
Diameter = 348 pm
46.4 nm x (1 m / 10^9 nm) x (10^12 pm / 1 m) x (1 Au atom / 248 pm) = 133 atoms of gold
Answer:
it is a square
Explanation:
I hope it will helps you
sorry it's not a true answer
because I want points
Answer: It depends equilibrium constant K
Explanation: You need to to have reaction formula.
If K >> 1 then concentrations of products are much bigger than
concentrations of reactants. If K < < 1, concentration of products is small.
Answer
Susan can process wind speed data from different regions.
Explanation
A Doppler radar is used in weather forecasting in measuring the direction and speed of objects such as drops of precipitation. It determines if the movement occurring in the atmosphere is horizontally towards or way from the radar. Susan can obtain velocity data about objects at a distance which might be water droplets thus be able to predict a coming weather