Answer:
Value of for the given redox reaction is
Explanation:
Redox reaction with states of species:
Reaction quotient for this redox reaction:
Species inside third braket represent concentration in molarity, P represent pressure in atm and concentration of is taken as 1 due to the fact that is a pure liquid.
So,
Plug in all the given values in the equation of :
Answer: c.They have a unique set of properties that can be used as identifiers.
Explanation:
Compound is a pure substance which is made from atoms of different elements combined together in a fixed ratio by mass.
Compounds can be decomposed into simpler constituents using chemical reactions.
Example: Water
Compounds have different properties than the elements it is made up of.
Thus the most accurate description of compounds is that they have a unique set of properties that can be used as identifiers.
Explanation:
We are given: entropy of Fe2O3 = 90J/K.mol
: entropy of C = 5.7J/K.mol
: entropy of Fe = 27.2J/K.mol
: entropy of CO = 198J/K.mol
Answer:
The correct answer is C.
Answer:
ΔH°rxn = - 433.1 KJ/mol
Explanation:
- CH4(g) + 4Cl2(g) → CCl4(g) + 4HCl(g)
⇒ ΔH°rxn = 4ΔH°HCl(g) + ΔH°CCl4(g) - 4ΔH°Cl2(g) - ΔH°CH4(g)
∴ ΔH°Cl2(g) = 0 KJ/mol.....pure element in its reference state
∴ ΔH°CCl4(g) = - 138.7 KJ/mol
∴ ΔH°HCl(g) = - 92.3 KJ/mol
∴ ΔH°CH4(g) = - 74.8 KJ/mol
⇒ ΔH°rxn = 4(- 92.3 KJ/mol) + (- 138.7 KJ/mol) - 4(0 KJ/mol) - (- 74.8 KJ/mol)
⇒ ΔH°rxn = - 369.2 KJ/mol - 138.7 KJ/mol - 0 KJ/mol + 74.8 KJ/mol
⇒ ΔH°rxn = - 433.1 KJ/mol
The melting point of potassium =
Melting point of titanium =
Titanium has a stronger metallic bonding compared to potassium. Titanium being a transition metal has greater number of valence electrons (4 valence electrons) contributing to the valence electron sea compared to potassium which has only one valence electron. The atomic size of Titanium much lower than that of potassium, so the bonding between Titanium atoms is stronger than that of potassium. Hence, the melting point of Titanium is much higher than that of potassium.