Answer:
work out if it's either going to sink or float
Explanation:
this can be carried out by calculating the numbers
1) 0.89% m/v = 0.89 grams of NaCl / 100 ml of solution
=> 8.9 grams of NaCl in 1000 ml of solution = 8.9 grams of NaCl in 1 liter of solution
2) Molarity = M = number of moles of solute / liters of solution
=> calculate the number of moles of 8.9 grams of NaCl
3) molar mass of NaCl = 23.0 g /mol + 35.5 g/mol = 58.5 g / mol
4) number of moles of NaCl = mass / molar mass = 8.9 g / 58.5 g / mol = 0.152 mol
5) M = 0.152 mol NaCl / 1 liter solution = 0.152 M
Answer: 0.152 M
Answer:
Explanation:
Combustion reaction is given below,
C₂H₅OH(l) + 3O₂(g) ⇒ 2CO₂(g) + 3H₂O(g)
Provided that such a combustion has a normal enthalpy,
ΔH°rxn = -1270 kJ/mol
That would be 1 mol reacting to release of ethanol,
⇒ -1270 kJ of heat
Now,
0.383 Ethanol mol responds to release or unlock,
(c) Determine the final temperature of the air in the room after the combustion.
Given that :
specific heat c = 1.005 J/(g. °C)
m = 5.56 ×10⁴ g
Using the relation:
q = mcΔT
- 486.34 = 5.56 ×10⁴ × 1.005 × ΔT
ΔT= (486.34 × 1000 )/5.56×10⁴ × 1.005
ΔT= 836.88 °C
ΔT= T₂ - T₁
T₂ = ΔT + T₁
T₂ = 836.88 °C + 21.7°C
T₂ = 858.58 °C
Therefore, the final temperature of the air in the room after combustion is 858.58 °C
Sodium is a member of the alkali metal family with potassium (K) and Lithium (LI) sodium's big claim to fame is that it's one or two elements in your table salt. when bonded to chlorine (CI) THE two elements make sodium chloride
Answer:
0.121 moles of aluminum metal are required to produce 4.04 L of hydrogen gas at 1.11 atm and 27 °C by reaction with HCl
Explanation:
This is the reaction:
2 Al(s) + 6 HCl(aq) → 2 AlCl₃ (aq) + 3 H₂(g)
To make 3 moles of H₂, we need 2 moles of Al.
By conditions given, we will find out how many moles of H₂ do we have.
Let's use the Ideal Gas Law
P. V = n . R . T
1.11 atm . 4.04L = n . 0.082 L.atm/mol.K . 300K
(1.11 atm . 4.04L) / (0.082 mol.K/L.atm . 300K) = n
0.182 mol = n
So the rule of three will be:
If 3 moles of H₂ came from 2 moles of Al
0.182 moles of H₂ will come from x
(0.182 .2) / 3 = 0.121 moles