Hello!
In terms of an arc length, radians is the measurement of an arc length in terms of the original radius. This arc length is 2.5 radians, so we multiply it by our original radius.
2.5(6)=15
Therefore, the arc length is 15 meters.
I hope this helps!
This is a problem of conservation of momentum
Momentum before throwing the rock: m*V = 96.0 kg * 0.480 m/s = 46.08 N*s
A) man throws the rock forward
=>
rock:
m1 = 0.310 kg
V1 = 14.5 m/s, in the same direction of the sled with the man
sled and man:
m2 = 96 kg - 0.310 kg = 95.69 kg
v2 = ?
Conservation of momentum:
momentum before throw = momentum after throw
46.08N*s = 0.310kg*14.5m/s + 95.69kg*v2
=> v2 = [46.08 N*s - 0.310*14.5N*s ] / 95.69 kg = 0.434 m/s
B) man throws the rock backward
this changes the sign of the velocity, v2 = -14.5 m/s
46.08N*s = - 0.310kg*14.5m/s + 95.69kg*v2
v2 = [46.08 N*s + 0.310*14.5 N*s] / 95.69 k = 0.529 m/s
A car driving up a hill at a constant speed experiences no change in its kinetic energy while it's potential energy increases with increasing height, thus none of the options are correct.
Understanding the concept
Consider a car moving up the hill at a constant speed as shown in the figure below. The following forces act on the car:
- N is the normal reaction force acting in an upward direction
- f_s is the static friction force exerted due to friction between the road and the tires of the car
- f_k is the rolling friction force in the direction opposing that of the tire
- mg is the force acting in a downward direction.
- θ is the angle of inclination.
Here as the car is moving up the hill at a constant speed, the net force exerted on the car is zero. Also, the kinetic energy of the car will not change as its velocity is constant and the potential energy will change with increasing height. Thus, none of the given options are correct.
Learn more about motion on an incline here:
<u>brainly.com/question/13513083</u>
#SPJ4
Answer:
You input potential energy into the rubber band system when you stretched the rubber band back. Because it is an elastic system, this is kind of potential energy is specifically called elastic potential energy.
It makes no sense how you typed this problem out.