Answer: 100% (double)
Explanation:
The question tells us two important things:
- Mass remains constant
- Volume remains constant
(We can think in a gas enclosed in a closed bottle, which is heated, for instance)
In this case we know that, as always the gas can be considered as ideal, we can apply the general equation for ideal gases, as follows:
- State 1 (P1, V1, n1, T1) ⇒ P1*V1 = n1*R*T1
- State 2 (P2, V2, n2, T2) ⇒ P2*V2 = n2*R*T2
But we know that V1=V2 and that n1=n2, som dividing both sides, we get:
P1/P2 = T1/T2, i.e, if T2=2 T1, in order to keep both sides equal, we need that P2= 2 P1.
This result is just reasonable, because as temperature measures the kinetic energy of the gas molecules, if temperature increases, the kinetic energy will also increase, and consequently, the frequency of collisions of the molecules (which is the pressure) will also increase in the same proportion.
Answer:
birds-eye view perspective
Explanation:
If someone asked me to design an office building, I would draw it from a birds-eye view perspective. I would draw it this way so I could map out where everything in the office would go and make sure I have enough space for everything. I would also draw it this way in order to clearly see where everything would go in the office. For instance, cubicles/desks could go in the bottom left corner, while the boss's office could go in the top right. It would be easier to organize and it would be easier for me to look back on when I need to actually design the office later.
(i'm not sure if this is what your question is asking for so i just made my best guess)