<h2>
Answer: C) He could have thrown the bag of money sideways, creating a horizontal reaction force on himself.</h2>
Explanation:
According to Newton's third law of motion, when two bodies interact between them, appear equal forces and opposite senses in each of them.
To understand it better:
Each time a body or object exerts a force on a second body or object, it (the second body) will exert a force of equal magnitude and direction but in the opposite direction on the first.
So, if the rich man had pushed the bag of money horizontally opposite of where he was, he could have saved himself.
Answer:
x2=0.732m
Explanation:
We can calculate the spring constant using the equilibrium equation of the block m1. Since the spring is in equilibrium, we can say that the acceleration of the block is equal to zero. So, its equilibrium equation is:

Then using the equilibrium equation of the block m2, we have:

In words, the lenght x2 of the spring when the m2 block is hung from it, is 0.732m.
2.7549 x 10^4 is the answer I hope this helped u
Answer:

Explanation:
From the question we are told that:
Density 
Frequency
Length
Generally the equation for Frequency is mathematically given by

Therefore



Answer:
part (a)
towards north east direction.
part (b) s = 46.60 m
Explanation:
Given,
- velocity of the river due to east =

- velocity of the boat due to the north =

part (a)
River is flowing due to east and the boat is moving in the north, therefore both the velocities are perpendicular to each other and,
Hence the resultant velocity i,e, the velocity of the boat relative to the shore is in the North east direction. velocities are the vector quantities, Hence the resultant velocity is the vector addition of these two velocities and the angle between both the velocities are 
Let 'v' be the velocity of the boat relative to the shore.

Let
be the angle of the velocity of the boat relative to the shore with the horizontal axis.
Direction of the velocity of the boat relative to the shore.
part (b)
- Width of the shore = w = 300m
total distance traveled in the north direction by the boat is equal to the product of the velocity of the boat in north direction and total time taken
Let 't' be the total time taken by the boat to cross the width of the river.
Therefore the total distance traveled in the direction of downstream by the boat is equal to the product of the total time taken and the velocity of the river