1/8=(1/2)^3 and the half life of radon is 3.8days
Half life is the time it takes for half of any amount of a radioactive substance to decay into something else.
Therefore for a sample of radon to decay to 1/8 of its original amount, it would take 3 x 3.8days=11.4 days
To identify a precipitation reaction and predict solubilities. ... solution of potassium dichromate to give a reddish precipitate of ... When aqueous solutions of silver nitrate and potassium dichromate are ...
Missing: AgNO2+
Answer:
At 430.34 K the reaction will be at equilibrium, at T > 430.34 the
reaction will be spontaneous, and at T < 430.4K the reaction will not
occur spontaneously.
Explanation:
1) Variables:
G = Gibbs energy
H = enthalpy
S = entropy
2) Formula (definition)
G = H + TS
=> ΔG = ΔH - TΔS
3) conditions
ΔG < 0 => spontaneous reaction
ΔG = 0 => equilibrium
ΔG > 0 non espontaneous reaction
4) Assuming the data given correspond to ΔH and ΔS
ΔG = ΔH - T ΔS = 62.4 kJ/mol + T 0.145 kJ / mol * K
=> T = [ΔH - ΔG] / ΔS
ΔG = 0 => T = [ 62.4 kJ/mol - 0 ] / 0.145 kJ/mol*K = 430.34K
This is, at 430.34 K the reaction will be at equilibrium, at T > 430.34 the reaction will be spontaneous, and at T < 430.4K the reaction will not occur spontaneously.
Answer:
c. Many of their bonds are C-C and C-H
Explanation:
The majority of bonds in carbohydrates and lipids( being an organic compound) are C-C and C-H. Like glucose, fructose or galactose ,etc.
These bonds are strong and do require a lot of energy to break. Thus, a lot of energy are required to break carbs and lipids into simpler compounds.Therefore, carbohydrates and lipids have high potential energy.
The correct answer is c.