<h2>
Answer:</h2><h2>
The acceleration of the meteoroid due to the gravitational force exerted by the planet = 12.12 m/
</h2>
Explanation:
A meteoroid is in a circular orbit 600 km above the surface of a distant planet.
Mass of the planet = mass of earth = 5.972 x
Kg
Radius of the earth = 90% of earth radius = 90% 6370 = 5733 km
The acceleration of the meteoroid due to the gravitational force exerted by the planet = ?
By formula, g = 
where g is the acceleration due to the gravity
G is the universal gravitational constant = 6.67 x

M is the mass of the planet
r is the radius of the planet
Substituting the values, we get
g = 
g = 12.12 m/
The acceleration of the meteoroid due to the gravitational force exerted by the planet = 12.12 m/
The harmonic frequency of a musical instrument is the minimum frequency at which a string that is fixed at both ends in the instrument may vibrate. The harmonic frequency is known as the first harmonic. Each subsequent harmonic has a frequency equal to:
n*f, where n is the number of the harmonic and f is the harmonic frequency. Therefore, the harmonic frequency may be calculated using:
f = 100 / 2
f = 50 Hz
Answer:
0.11 kg
Explanation:
Ft = MV
Ft = momentum 5.22kg m/s
M = mass
V = velocity 48.3m/s
Therefore
5.22 = M x 48.3
Divide both sides by 48.3
5.22/48.3 = M x 48.3/48.3
0.11 = M
M = 0.11kg
Answer:
175 m
Explanation:
The average velocity for constant acceleration is the average of the beginning and ending velocities. That is (0+39)/2=19.5 m/s. If the bicyclist rides for 9 seconds, the distance traveled is ...
(9 s)(19.5 m/s) = 175.5 m
She would travel 175.5 meters in that time.
A)Linear motion
If there is not net force on the car, then by the Newton Second Law, the acceleration is zero, and the only valid option for zero acceleration is A).