Answer:
v = 1.4 m /s
Explanation:
We shall apply law of conservation of mechanical energy
The kinetic energy of dart and block is converted into potential energy of both dart and block .
1 /2 (m+M) v² = ( m +M) gH
.5 x v² = 9.8 x .1
= v² = 1.96
v = 1.4
v = 1.4 m /s
Hello User,
Approximately 32 electrons can be fit in the fourth energy level.
Solution:
2+4+6+10+10=32
No, that's silly.
You've got your Pfund series where electrons fall down to the 5th level,
your Brackett series where they fall to the 4th level, and your Paschen
series where they fall to the 3rd level. All of those transitions ploop out
photons at Infrared wavelengths.
THEN next you get your Balmer series, where the electrons fall in
to the 2nd level. Most of those are at visible wavelengths, but even
a few of the Balmer transitions are in the Ultraviolet.
And then there's the Lyman series, where electrons fall all the way
down to the #1 level. Those are ALL in the ultraviolet.
Answer:

Explanation:
The magnitude of the electrostatic force between two charged objects is

where
k is the Coulomb's constant
q1 and q2 are the two charges
r is the separation between the two charges
The force is attractive if the charges have opposite sign and repulsive if the charges have same sign.
In this problem, we have:
is the distance between the charges
since the charges are identical
is the force between the charges
Re-arranging the equation and solving for q, we find the charge on each drop:
