Use the question marck Moles of CO2
The the giving = 0.624 mol O2
Find the CF faction = 1 mole= 32.00 of O2
O= 2x16.00= 32.00amu ( writte this in the cf fraction)
SET UP THE CHART
Always start with the giving
0.624 mol O2 / 1mol of CO2
___________ / _____________ = Cancel the queal ( O2)
/ 32.00c O2
/
/
Multiply the top and divide by the bottom
0.624 mol CO x 1mol CO2 = 0.624 divide by 32.00 O2 =0.0195
You should look at the giving number ( how many num u gor ever there)
Ur answer should have the same # as ur givin so
= 0.0195
= .0195 mol of CO2
Well none since molecules are a group of two or more atoms electrically bonded with one another. However, there are gases that does not naturally bond due to their stability and can be found in nature as pure elements. But these are not considered as molecules.
(By the way, these gases are the noble gases that can be found on the last column of the periodic table)
Answer:
1.35 g
Explanation:
Data Given:
mass of Potassium Permagnate (KMnO₄) = 3.34 g
Mass of Oxygen: ?
Solution:
First find the percentage composition of Oxygen in Potassium Permagnate (KMnO₄)
So,
Molar Mass of KMnO₄ = 39 + 55 + 4(16)
Molar Mass of KMnO₄ = 158 g/mol
Calculate the mole percent composition of Oxygen in Potassium Permagnate (KMnO₄).
Mass contributed by Oxygen (O) = 4 (16) = 64 g
Since the percentage of compound is 100
So,
Percent of Oxygen (O) = 64 / 158 x 100
Percent of Oxygen (O) = 40.5 %
It means that for ever gram of Potassium Permagnate (KMnO₄) there is 0.405 g of Oxygen (O) is present.
So,
for the 3.34 grams of Potassium Permagnate (KMnO₄) the mass of Oxygen will be
mass of Oxygen (O) = 0.405 x 3.34 g
mass of Oxygen (O) = 1.35 g
A fusion reaction can be regarded as the type of reaction that occurs where two lighter elements come together in a type of reaction giving rise to a heavier/more massive element.
A fusion reaction always creates a more massive atomic nucleus (option c).
When the two lighter nuclei comes together in a reaction, a more heavier/massive nucleus is formed but its mass will still be less than the combined mass of the two reactant nuclei.
This also indicates that the left over mass may have been released as energy.
Learn more: brainly.com/question/18175586