Answer:
I=1.48 A
Explanation:
Given that
B=3.1 x 10⁻5 T
b= 4.2 cm
l= 9.5 cm
The relationship for magnetic field and current given as

Where

By putting the values


D=26.03 m⁻¹



I=1.48 A
Answer:
1.) 274.5v
2.) 206.8v
Explanation:
1.) Given that In one part of the lab activities, students connected a 2.50 µF capacitor to a 746 V power source, whilst connected a second 6.80 µF capacitor to a 562 V source.
The potential difference and charge across EACH capacitor will be
V = Voe
Where Vo = initial voltage
e = natural logarithm = 2.718
For the first capacitor 2.50 µF,
V = Vo × 2.718
746 = Vo × 2.718
Vo = 746/2.718
Vo = 274.5v
To calculate the charge, use the below formula.
Q = CV
Q = 2.5 × 10^-6 × 274.5
Q = 6.86 × 10^-4 C
For the second capacitor 6.80 µF
V = Voe
562 = Vo × 2.718
Vo = 562/2.718
Vo = 206.77v
The charge on it will be
Q = CV
Q = 6.8 × 10^-6 × 206.77
Q = 1.41 × 10^-3 C
B.) Using the formula V = Voe again
165 = Vo × 2.718
Vo = 165 /2.718
Vo = 60.71v
Q = C × 60.71
Q = C
The strong nuclear force holds the nucleus of an atom together.
Somehow, it overcomes the electrical force of repulsion between protons in the nucleus, which all have the same charge but still stay close together somehow. (b)
The main formula to be used here is
Force = (mass) x (acceleration).
We'll get to work in just a second. But first, I must confess to you that I see
two things happening here, and I only know how to handle one of them. So
my answer will be incomplete, but I believe it will be more reliable than the
first answer that was previously offered here.
On the <u>right</u> side ... where the 2 kg and the 3 kg are hanging over the same
pulley, those weights are not balanced, so the 3 kg will pull the 2kg down, with
some acceleration. I don't know what to do with that, because . . .
At the <em>same time</em>, both of those will be pulled <u>up</u> by the 10 kg on the other side
of the upper pulley.
I think I can handle the 10 kg, and work out the acceleration that IT has.
Let's look at only the forces on the 10 kg:
-- The force of gravity is pulling it down, with the whatever the weight of 10 kg is.
-- At the same time, the rope is pulling it UP, with whatever the weight of 5 kg is ...
that's the weight of the two smaller blocks on the other end of the rope.
So, the net force on the 10 kg is the weight of (10 - 5) = 5 kg, downward.
The weight of 5 kg is (mass) x (gravity) = (5 x 9.8) = 49 newtons.
The acceleration of 10 kg, with 49 newtons of force on it, is
Acceleration = (force) / (mass) = 49/10 = <em>4.9 meters per second²</em>