Answer:
Examples of man-made objects that spread an impulse over a large amount of time are "airbags" in vehicles and "arrestor beds" (for trucks).
Explanation:
The question above is highly related to the topic about "Impulse" in Physics.
"Impulse"<em> refers to an object's change in momentum (the amount of motion in an object) when a force acts upon it for an interval time.</em> When it comes to providing safety to people when it comes to vehicular crashes, impulse plays a vital role.
Let's take the example of airbags in vehicles. Once a vehicle collides with another object, the driver is carried by a forward motion. Without airbags, the time is normally shorter for the driver to be stopped by the windshield. This results to a greater force. However, with the presence of air-bags, the driver will hit the airbag, instead of the windshield. <u>This will lengthen the time of the impact, thus reducing the force.</u>
Another example are the arrestor beds for trucks. Arrestor beds have been designed in order for trucks to stop, since it's hard to maneuver them. <u>With the help of arrestor beds, trucks are able to come to a stop with a longer time interval, but decreased force.</u>
Because melting point<span> and </span>freezing point<span> describe the</span>same<span> transition of matter, in this case from liquid to solid (</span>freezing) or equivalently, from solid to liquid (melting<span>).</span>
The particle motion increases, and temperature increases. Hope this helps GIVE ME BRANLIST
Answer:
1.7 m
Explanation:
= Velocity of ball in x direction = 4.47 m/s
= Velocity of ball in y direction = 0
g = Acceleration due to gravity = 
t = Time taken
= Vertical displacement = 0.7 m

Horizontal displacement is given by

The passenger should throw the ball 1.7 m in front of the bucket.
Ideal Gas Law PV = nRT
THE GASEOUS STATE
Pressure atm
Volume liters
n moles
R L atm mol^-1 K^-1
Temperature Kelvin
pv = rt
divide both sides by v
pv/v = rt/v
p = rt/v
answer: p = rt/v
Ideal Gas Law: Density
PV = NRT
PV = mass/(mw)RT
mass/V = P (MW)/RT = density
Molar Mass:
Ideal Gas Law PV = NRT
PV = mass/(MW) RT
MW = mass * RT/PV
Measures of Gases:
Daltons Law of Partial Pressures; is the total pressure of a mixture of gases equals the sum of the partial pressures of the individual gases.
Total = P_ A + P_ B
P_ A V = n_ A RT
P_ B V = n_ B R T
Partial Pressures in Gas Mixtures:
P_ total = P_ A + P_ B
P_ A = n_ A RT/V P_ B = n_ B RTV
P_ total = P_ A + P_ B = n_ total RT/V
For Ideal Gasses:
P_ A = n_ A RT/V P_ total = n_ toatal RT/V
P_ A/P_ total = n_ A RTV/n_ total RTV
= n_ A/n_ total = X_ A
Therefore, P_ A = X_ A P_ total.
PV = nRT
P pressure
V volume
n Number of moles
R Gas Constant
T temperture (Kelvin.).
Hope that helps!!!!!! Have a great day : )