Answer:
6.214g/cm³
Explanation:
The question is on density of a material
Density=mass/volume
Given, mass=87grams and volume= 14 cm³ density=?
Density=m/v 87/14 =6.214g/cm³
Answer:
I believe a wedge and a lever
Explanation:
Answer:
C) 1.0 m
Explanation:
The component of the velocity parallel to the sidewalk is:
vₓ = v cos θ
vₓ = 0.1 m/s cos 45°
vₓ = 0.0707 m/s
The distance traveled after 14 seconds is:
d = vₓ t
d = (0.0707 m/s) (14 s)
d = 0.99 m
Closest answer is C) 1.0 m.
Answer:
The alternative energy sources are defined as those resources that are used in place of the natural and non-renewable resources. This resources plays an important role in the conservation of natural resources.
The fossil fuels are the resources on which the people are directly dependent. Burning up of these fossils leads to the emission of carbon, which has a direct impact on earth. A small increase in the amount of carbon dioxide can lead to the increase in the surface temperature of earth.
In addition to this, these fossil fuels such as coal, petroleum, oil and natural gases are found to be present in a limited proportion, and it is a very expensive process to obtain these resources, so sustainable development method must be adopted in order to save this natural resources for the future generation.
Some of the examples of alternative resources that are widely used in place of fossil fuels are wind energy, solar energy, tidal energy, biomass energy and bio-fuels.
Thus, it is very important to develop and use alternative resources.
Answer:
Option C is correct.
The component of acceleration perpendicular to an object’s velocity tells us How the object’s direction changes.
Explanation:
This acceleration is called radial/tangential acceleration. It is the reason why a body moving in circular motion with constant velocity can be said to also be accelerating because its direction is continuously changing. The acceleration is usually directed towards the centre of the circular motion of the body or trying to throw the body off its circular motion path.