Answer: 313920
Explanation:First, we’re going to assume that the top of the circular plate surface is 2 meters under the water. Next, we will set up the axis system so that the origin of the axis system is at the center of the plate.
Finally, we will again split up the plate into n horizontal strips each of width Δy and we’ll choose a point y∗ from each strip. Attached to this is a sketch of the set up.
The water’s surface is shown at the top of the sketch. Below the water’s surface is the circular plate and a standard xy-axis system is superimposed on the circle with the center of the circle at the origin of the axis system. It is shown that the distance from the water’s surface and the top of the plate is 6 meters and the distance from the water’s surface to the x-axis (and hence the center of the plate) is 8 meters.
The depth below the water surface of each strip is,
di = 8 − yi
and that in turn gives us the pressure on the strip,
Pi =ρgdi = 9810 (8−yi)
The area of each strip is,
Ai = 2√4− (yi) 2Δy
The hydrostatic force on each strip is,
Fi = Pi Ai=9810 (8−yi) (2) √4−(yi)² Δy
The total force on the plate is found on the attached image.
This question is incomplete because the options are missing; here is the complete question
The ozone layer is found in which layer of the atmosphere?
A. Stratosphere
B. Mesosphere
C. Thermosphere
D. Troposphere
The correct answer is A. Stratosphere
Explanation:
The ozone layer as indicated by its name is mainly composed of Ozone (O2), this layer is essential for life because it filters ultraviolet radiation and acts as a greenhouse effect gas by trapping part of the heat from the sun. Additionally, the ozone layer is located in the stratosphere, which is the second layer of the atmosphere and can be found between 20 km to 50 km from Earth's surface. Moreover, the existence of the ozone layer in the stratosphere makes the temperature increase with height due to the radiation of the sun filter by ozone.
What your saying doesn't make sense.
The spring has been stretched 0.701 m
Explanation:
The elastic potential energy of a spring is the potential energy stored in the spring due to its compression/stretching. It is calculated as

where
k is the spring constant
x is the elongation of the spring with respect to its equilibrium position
For the spring in this problem, we have:
E = 84.08 J (potential energy)
k = 342.25 N/m (spring constant)
Therefore, its elongation is:

Learn more about potential energy:
brainly.com/question/1198647
brainly.com/question/10770261
#LearnwithBrainly