Explanation:
Given that,
Mass of a freight car, 
Speed of a freight car, 
Mass of a scrap metal, 
(a) Let us assume that the final velocity of the loaded freight car is V. The momentum of the system will remain conserved as follows :

So, the final velocity of the loaded freight car is 0.182 m/s.
(b) Lost on kinetic energy = final kinetic energy - initial kinetic energy
![\Delta K=\dfrac{1}{2}[(m_1+m_2)V^2-m_1u_1^2)]\\\\=\dfrac{1}{2}\times [(30,000+110,000 )0.182^2-30000(0.85)^2]\\\\=-8518.82\ J](https://tex.z-dn.net/?f=%5CDelta%20K%3D%5Cdfrac%7B1%7D%7B2%7D%5B%28m_1%2Bm_2%29V%5E2-m_1u_1%5E2%29%5D%5C%5C%5C%5C%3D%5Cdfrac%7B1%7D%7B2%7D%5Ctimes%20%5B%2830%2C000%2B110%2C000%20%290.182%5E2-30000%280.85%29%5E2%5D%5C%5C%5C%5C%3D-8518.82%5C%20J)
Lost in kinetic energy is 8518.82. Negative sign shows loss.
Answer:
this is a law because it is a constant fact of nature
Explanation:
Carbon is one of the main building blocks of life. This is what carbon dating is so effective, because scientists are able to tell the approximate age of something that was once alive given how much carbon is still in the animal.
<span />
Answer:
5.843 m
Explanation:
suppose that the arrow leave the bow with a horizontal speed , towards he bull's eye.
lets consider that horizontal motion
distance = speed * time
time = 40/ 37 = 1.081 s
arrow doesnot have a initial vertical velocity component. but it has a vertical motion due to gravity , which may cause a miss of the target.
applying motion equation
(assume g = 10 m/s²)

Arrow misses the target by 5.843m ig the arrow us split horizontally