True.
I think that’s the answer.
Black balls with blue waffles
Let say the point is inside the cylinder
then as per Gauss' law we have

here q = charge inside the gaussian surface.
Now if our point is inside the cylinder then we can say that gaussian surface has charge less than total charge.
we will calculate the charge first which is given as


now using the equation of Gauss law we will have


now we will have

Now if we have a situation that the point lies outside the cylinder
we will calculate the charge first which is given as it is now the total charge of the cylinder


now using the equation of Gauss law we will have


now we will have
Explanation:
Let us assume that the separation of plate be equal to d and the area of plates is
. As the capacitance of capacitor is given as follows.
C = 
It is known that the dielectric strength of air is as follows.
E = 
Expression for maximum potential difference is that the capacitor can with stand is as follows.
dV = E × d
And, maximum charge that can be placed on the capacitor is as follows.
Q = CV
= 
= 
= 
= 
or, = 10.62 nC
Thus, we can conclude that charge on capacitor is 10.62 nC.