Answer:
Tso = 28.15°C
Explanation:
given data
t2 = 21 mm
ki = 0.026 W/m K
t1 = 9 mm
kp = 180 W/m K
length of the roof is L = 13 m
net solar radiation into the roof = 107 W/m²
temperature of the inner surface Ts,i = -4°C
air temperature is T[infinity] = 29°C
convective heat transfer coefficient h = 47 W/m² K
solution
As when energy on the outer surface at roof of a refrigerated truck that is balance as
Q =
.....................1
Q =
.....................2
now we compare both equation 1 and 2 and put here value
solve it and we get
Tso = 28.153113
so Tso = 28.15°C
Answer:
Problem 1 (10 points) In the first homework you were instructed to design the mechanical components of an oscillating compact disc reader. Since you did such a good job in your design, the company decided to work with you in their latest Blue-ray readers, as well. However, this time the task is that once the user hits eject button, the motor that spins the disc slows down from 2000 rpm to 300 rpm and at 300 rpm a passive torsional spring-damper mechanism engages to decelerate and stop the disc. Here, your task is to design this spring-damper system such that the disc comes to rest without any oscillations. The rotational inertia of the disc (J) is 2.5 x 10-5kg m² and the torsional spring constant (k) is 5 × 10¬³NM. Calculate the critical damping coefficient cc for the system. choice of the damper, bear in mind that a good engineer stays at least a factor of In your 2 away from the danger zone (i.e., oscillations in this case). Use the Runge Kutta method to simulate the time dependent angular position of the disc, using the value of damping coefficient (c) that calculated. you Figure 1: Blue-ray disc and torsional spring-damper system.
It's an n-type dopants, as it makes the silicone n-type after the doping. so, False
Zrizorzlzfxxxgoxxxxpgxtoxxxhxuxyf