Answer: Finding the [H3O+] and pH of Strong and Weak Acid Solutions The larger the Ka, the stronger the acid and the higher the H+ concentration at equilibrium. hydronium ion, H3O+, 1.0, 0.00, H2O, 1.0×10−14, 14.00.
Explanation:The hydrogen ion in aqueous solution is no more than a proton, a bare ... the interaction between H+ and H2O .
The correct answer is option A.
D = M/V
The density of a substance is the ratio of its mass to its volume.
Density = mass / volume
or D = M/V
The unit of density is gram per milliliter or g/ml, when mass is expressed in gram or g and the volume is expressed in milliliter ml.
If we know the mass and volume of a substance we can calculate its density using the formula for density.
Answer:
The new volume of gas would be 30 L.
Explanation:
This is an example of a Combined Gas Laws problem.
Answer:
- Question 19: the three are molecular compounds.
Explanation:
<em>Question 19.</em>
All of them are the combination of two kinds of different atoms in fixed proportions.
- C₂H₄: two carbon atoms per four hydrogen atoms
- HF: one hydrogen atom per one fluorine atom
- H₂O₂: two hydrogen atoms per two oxygent atoms
Thus, they all meet the definition of compund: a pure substance formed by two or more different elements with a definite composition.
Molecular compounds are formed by covalent bonds and ionic compounds are formed by ionic bonds.
Two non-metal elements, like H-F, C - C, C - H, H-O, H - H, and O - O will share electrons forming covalent bonds to complete their valence shell. Thus, the three compounds are molecular and not ionic.
<em>Question 20. </em>Formula of copper(II) sulfate hydrate with 36.0% water.
Copper(II) sulfate is CuSO₄. Its molar mass is 159.609g/mol
Water is H₂O. Its molar mass is 18.015g/mol
Calling x the number of water molecules in the hydrate, the percentage of water is:

From which we can solve for x:

Thus, there are 5 molecules of water per each unit of CuSO₄, and the formula is: