Answer:
The number of moles of xenon are 1.69 mol.
Explanation:
Given data:
Number of moles of xenon = ?
Volume of gas = 37.8 L
Temperature = 273 K
Pressure = 1 atm
Solution:
The given problem will be solve by using general gas equation,
PV = nRT
P= Pressure
V = volume
n = number of moles
R = general gas constant = 0.0821 atm.L/ mol.K
T = temperature in kelvin
Now we will put the values in formula.
1 atm × 37.8 L = n × 0.0821 atm.L/ mol.K ×273 K
37.8 atm.L = n × 22.413 atm.L/ mol.
n = 37.8 atm.L / 22.413 atm.L/ mol.
n = 1.69 mol
The number of moles of xenon are 1.69.
To solve this we assume
that the gas is an ideal gas. Then, we can use the ideal gas equation which is
expressed as PV = nRT. At a constant temperature and number of moles of the gas
the product of PV is equal to some constant. At another set of condition of
temperature, the constant is still the same. Calculations are as follows:
P1V1 =P2V2
<span>P2 = P1V1/V2</span>
<span>
</span>
<span>The correct answer is the first option. Pressure would increase. This can be seen from the equation above where V2 is indirectly proportional to P2.</span>
Answer:
<em>This type of error affects overall accuracy but does not necessarily affect precision.</em> - Systematic error
<em>This type of error affects precision but does not necessarily affect overall accuracy.</em> - Random error
<em>This type of error occurs if you use a buret that was calibrated incorrectly when it was made.</em> - Systematic error
<em>You can minimize this type of error by taking repeated measurements.</em> - Random error
Explanation:
<em>Systematic errors are errors that are attributable to instrument being used during measurement or consistent incorrect measurement during a research</em>. They are consistently and repeatedly committed during measurements and therefore affect the overall accuracy of measurements. A person committing systematic error can have precise repeated measurement but will be far from being accurate.
R<em>andom errors on the other hand has no pattern and are usually unavoidable because they cannot be predicted.</em> When sufficient replicate measurements are made, such errors are reduced to the barest minimum and usually do not affect the overall accuracy of measurements.