Answer:
Velocity of the ping pong ball must be = V2= 6,035.34m/s
Explanation:
M1= momentum of the bowling ball
m1 = mass of the bowling ball= 5.8kg
v1= velocity of the bowling ball= 1.59m/s
M2= momentum of the ping pong ball
m2= mass of the ping pong ball= 1.528 g/1000= 0.001528kg
v2= velocity of the ping pong ball
Momentum of the bowling ball= M1= m1v1= 5.8* 1.59= 9.222 kg-m/s
Momentum of the ping pong ball = M2= M1= m2v2
= 0.001528 *v2= 9.222
v2= 9.222/0.001528= 6,035.34 m/s
Answer
given,
mass of the piano = 170 kg
angle of the inclination = 20°
moves with constant velocity hence acceleration = 0 m/s²
neglecting friction
so, force required to pull the piano
F = m g sin θ
F = 170 × 9.81 × sin 20°
F = 570.39 N
so, force required by the man to push the piano is F = 570.39 N
Definition: a supposition or proposed explanation made on the basis of limited evidence as a starting point for further investigation.
Sound waves travel faster through <em>solids</em> than they do through gases or liquids. <em>(C) </em>They don't travel through vacuum at all.
Example:
Speed of sound in normal air . . . around 340 m/s
Speed of sound in water . . . around 1,480 m/s
Speed of sound in iron . . . around 5,120 m/s