Answer: 
Explanation:

where,
= boiling point of solution = ?
= boiling point of solvent (X) = 
= freezing point constant = 
m = molality
i = Van't Hoff factor = 1 (for non-electrolyte like urea)
= mass of solute (urea) = 29.82 g
= mass of solvent (X) = 500.0 g
= molar mass of solute (urea) = 60 g/mol
Now put all the given values in the above formula, we get:


Therefore, the freezing point of solution is 
Auroras occur when ions from the Sun strike air molecules, causing them to give off bright colors of light.-google
Answer:
80.8 g
Explanation:
First, let's write a balanced equation of this reaction
MgO + 2HNO₃ → Mg(NO₃)₂ + H₂O
Now let's convert grams to moles
We gotta find the weight of MgO
24 + 16 = 40 g/mol
12/40 = 0.3 moles of MgO
We can use this to find out how much Magnesium Nitrate will be formed
0.3 x 1 MgO / 1 Mg(NO₃)₂ = 0.3 moles of Magnesium Nitrate formed
Convert moles to grams
Find the weight of Mg(NO₃)₂ but don't forget that 2 subscript acts as a multiplier of whatever is inside that parenthesis.
24 + 14 x 2 + 16 x 3 x 2 = 148 g/mol
148 x 0.3 = 80.8 g
<span>The products of the light-dependent reactions are used to help 'fuel' the light-independent reactions.
</span><span>Example:
NADPH and ATP are produced during the light-dependent reaction for use in the light-independent reaction (the Calvin Cycle). </span>
Yes the kingdom is more specific