The given magnitude of forces of F₁ = F₄, F₂ = F₃, F₁ = 2·F₂, give the
forces that exert zero net torque on the disk as the options;
(B) F₂
(D) F₄
<h3>How can the net torque on the disk be calculated?</h3>
The given parameters are;
F₁ = F₄
F₂ = F₃
F₁ = 2·F₂
Therefore;
F₄ = 2·F₂
In vector form, we have;
![\vec{F_4} = \mathbf{\frac{\sqrt{3} }{2} \cdot F_4 \cdot \hat i - 0.5 \cdot F_4 \hat j}](https://tex.z-dn.net/?f=%5Cvec%7BF_4%7D%20%3D%20%5Cmathbf%7B%5Cfrac%7B%5Csqrt%7B3%7D%20%7D%7B2%7D%20%5Ccdot%20F_4%20%5Ccdot%20%5Chat%20i%20-%20%200.5%20%5Ccdot%20F_4%20%5Chat%20j%7D)
![\vec{F_2} = \mathbf{ -F_2 \, \hat j}](https://tex.z-dn.net/?f=%5Cvec%7BF_2%7D%20%3D%20%5Cmathbf%7B%20-F_2%20%5C%2C%20%20%5Chat%20j%7D)
Clockwise moment due to F₄, M₁ = ![-0.5 \times F_4 \, \hat j \times \dfrac{R}{2}](https://tex.z-dn.net/?f=-0.5%20%5Ctimes%20F_4%20%5C%2C%20%20%5Chat%20j%20%20%5Ctimes%20%5Cdfrac%7BR%7D%7B2%7D)
Therefore;
![M_1 =- 0.5 \times 2 \times F_2 \, \hat j \times \dfrac{R}{2} = \mathbf{ -F_2 \, \hat j \times \dfrac{R}{2}}](https://tex.z-dn.net/?f=M_1%20%20%3D-%200.5%20%5Ctimes%202%20%5Ctimes%20%20F_2%20%5C%2C%20%20%5Chat%20j%20%20%5Ctimes%20%5Cdfrac%7BR%7D%7B2%7D%20%3D%20%20%20%5Cmathbf%7B%20-F_2%20%5C%2C%20%20%5Chat%20j%20%20%5Ctimes%20%5Cdfrac%7BR%7D%7B2%7D%7D)
Counterclockwise moment due to F₂ = ![-F_2 \, \hat j \times \dfrac{R}{2}](https://tex.z-dn.net/?f=-F_2%20%5C%2C%20%20%5Chat%20j%20%20%5Ctimes%20%5Cdfrac%7BR%7D%7B2%7D)
Given that the clockwise moment due to F₄ = The counterclockwise moment due to F₂, we have;
Two forces that combine to exert zero net torque on the disk are;
F₂, and F₄
Which are the options; (B) F₂, and (D) F₄
Learn more about the resolution of vectors here:
brainly.com/question/1858958