1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Kay [80]
2 years ago
5

A ball that has a mass of 0.25 kg spins in a circle at the end of a 1.6 m rope. the ball moves at a tangential speed of 12.2 m/s

. what is the centripetal force acting on the ball? 1.9 n 23 n 59 n 93 n
Physics
1 answer:
NARA [144]2 years ago
4 0

The centripetal force acting on the ball will be 23.26 N.The direction of the centripetal force is always in the path of the center of the course.

<h3>What is centripetal force?</h3>

The force needed to move a body in a curved way is understood as centripetal force. This is a force that can be sensed from both the fixed frame and the spinning body's frame of concern.

The given data in the problem is;

m is the mass of A ball = 0.25 kg

r is the radius of circle= 1.6 m rope

v is the tangential speed = 12.2 m/s

\rm F_C is the centripetal force acting on the ball

The centripetal force is found as;

\rm F_C = \frac{mv^2}{r}  \\\\ F_C = \frac{0.25 \times (12.2)^2}{1.6}  \\\\ F_C=23.26\ N

Hence the centripetal force acting on the ball will be 23.26 N.

To learn more about the centripetal force refer to the link;

brainly.com/question/10596517

You might be interested in
The dial of a scale looks like this: 00.0kg. A physicist placed a spring on it. The dial read 00.6kg. He then placed a metal cha
saveliy_v [14]

Answer:

d. The scale's resolution is too low to read the change in mass

Explanation:

If we want to find the change in energy of the spring, we will have to use the Hooke's Law. Hooke's Law states that:

F = kx

since,

w = Fd

dw = Fdx

integrating and using value of F, we get:

ΔE = (0.5)kx²

where,

ΔE = Energy added to spring

k = spring constant

x = displacement

The spring constant is typically in range of 4900 to 29400 N/m.

So if we take the extreme case of 29400 N/m and lets say we assume an unusually, extreme case of 1 m compression, we get the value of energy added to be:

ΔE = (0.5)(29400 N/m)(1 m)²

ΔE = 1.47 x 10⁴ J

Now, if we convert this energy to mass from Einstein's equation, we get:

ΔE = Δmc²

Δm = ΔE/c²

Δm = (1.47 x 10⁴ J)/(3 x 10⁸ m/s)²

<u>Δm =  4.9 x 10⁻¹³ kg</u>

As, you can see from the answer that even for the most extreme cases the value of mass associated with the additional energy is of very low magnitude.

Since, the scale only gives the mass value upto 1 decimal place.

Thus, it can not determine such a small change. So, the correct option is:

<u>d. The scale's resolution is too low to read the change in mass</u>

8 0
3 years ago
Show the equation of simple pendulum to be dimensionally consistent
nataly862011 [7]
T is in seconds (s) 

<span>2pi is dimensionless </span>

<span>L is in meters (m) </span>

<span>g is in meters per second squared (m/s^2) </span>

<span>so you can write the equation for the period of the simple pendulum in its units... </span>

<span>s=sqrt(m/(m/s^2)) </span>

<span>simplify</span>

<span>s=sqrt(m*s^2*1/m) cancelling the m's </span>

<span>s=sqrt(s^2) </span>

<span>s=s </span>

<span>therefore the dimensions on the left side of the equation are equal to the dimensions on the right side of the equation.</span>
6 0
3 years ago
A simple pendulum consists of a mass M attached to a string oflength L andnegligible mass. For this system, when undergoing smal
PilotLPTM [1.2K]

The frequency of the pendulum is independent of the mass on the end. (c)

This means that it doesn't matter if you hang a piece of spaghetti or a school bus from the bottom end.  If there is no air resistance, and no friction at the top end, and the string has no mass, then the time it takes the pendulum to swing from one side to the other <u><em>only</em></u> depends on the <u><em>length</em></u> of the string.

8 0
3 years ago
What is the period of a wave with a frequency of 100 Hz and a wavelength of 2.0 m
spin [16.1K]

The answer for the following answer is answered below.

  • <u><em>Therefore the time period of the wave is 0.01 seconds.</em></u>
  • <u><em>Therefore the option for the answer is "B".</em></u>

Explanation:

Frequency (f):

The number of  waves that pass a fixed place in a given amount of time.

The SI unit of frequency is Hertz (Hz)

Time period (T):

The time taken for one complete cycle of vibration to pass a given point.

The SI unit of time period is seconds (s)

Given:

frequency (f) = 100 Hz

wavelength (λ) = 2.0 m

To calculate:

Time period (T)

We know;

According to the formula;

<u>f =</u>\frac{1}{T}<u></u>

Where,

f represents the frequency

T represents the time period

from the formula;

  T = \frac{1}{f}

 T = \frac{1}{100}

  T = 0.01 seconds

<u><em>Therefore the time period of the wave is 0.01 seconds.</em></u>

5 0
3 years ago
Read 2 more answers
Did u poop yet friends or do diehra
Dennis_Churaev [7]

Answer:

ummmm none lol

Explanation:

4 0
3 years ago
Other questions:
  • The concentration of carbon monoxide in a sample of air is 8.1×10−6. There are ________ molecules of co in 1.00 l of this air at
    10·1 answer
  • A greyhound's velocity changes from rest to 19 m/s in 2 seconds. What is the greyhound's average acceleration?
    14·1 answer
  • Eratosthenes determined the circumference of Earth by conducting an experiment. Put his steps in order as they correlate to the
    9·1 answer
  • What is isostasy dependent on a balance between
    10·2 answers
  • What is the lowest frequency that will resonate in an organ pipe 2.00 m in length, closed at one end? The speed of sound in air
    15·1 answer
  • Rachel and Jason were pulling on a remote control from opposite ends. If Rachel was pulling west with a force of 100 N and the n
    14·1 answer
  • What percent of the world is tropical climates?
    7·1 answer
  • During normal beating, a heart creates a maximum 3.95-mV potential across 0.305 m of a person’s chest, creating a 0.75-Hz electr
    15·1 answer
  • Why does the moon appear dark from space?
    11·2 answers
  • A man supports himself and the uniform horizontal beam pulling the rope with a force T.The weights of men and the beam are 883 N
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!