Answer with Explanation:
The general equation of simple harmonic motion is

where,
A is the amplitude of motion
is the angular frequency of the motion
is known as initial phase
part 1)
Now by definition of velocity we have

part 2)
Now by definition of acceleration we have

part 3)
The angular frequency is related to Time period 'T' as
where
is the angular frequency of the motion of the particle.
Part 4) The acceleration and velocities are plotted below
since the maximum value that the sin(x) and cos(x) can achieve in their respective domains equals 1 thus the maximum value of acceleration and velocity is
and
respectively.
Answer:
The frequency that the sampling system will generate in its output is 70 Hz
Explanation:
Given;
F = 190 Hz
Fs = 120 Hz
Output Frequency = F - nFs
When n = 1
Output Frequency = 190 - 120 = 70 Hz
Therefore, if a system samples a sinusoid of frequency 190 Hz at a rate of 120 Hz and writes the sampled signal to its output without further modification, the frequency that the sampling system will generate in its output is 70 Hz
Answer:
M2 = 0.06404
P2 = 2.273
T2 = 5806.45°R
Explanation:
Given that p1 = 10atm, T1 = 1000R, M1 = 0.2.
Therefore from Steam Table, Po1 = (1.028)*(10) = 10.28 atm,
To1 = (1.008)*(1000) = 1008 ºR
R = 1716 ft-lb/slug-ºR cp= 6006 ft-lb/slug-ºR fuel-air ratio (by mass)
F/A =???? = FA slugf/slugaq = 4.5 x 108ft-lb/slugfx FA slugf/sluga = (4.5 x 108)FA ft-lb/sluga
For the air q = cp(To2– To1)
(Exit flow – inlet flow) – choked flow is assumed For M1= 0.2
Table A.3 of steam table gives P/P* = 2.273,
T/T* = 0.2066,
To/To* = 0.1736 To* = To2= To/0.1736 = 1008/0.1736 = 5806.45 ºR Gives q = cp(To* - To) = (6006 ft-lb/sluga-ºR)*(5806.45 – 1008)ºR = 28819500 ft-lb/slugaSetting equal to equation 1 above gives 28819500 ft-lb/sluga= FA*(4.5 x 108) ft-lb/slugaFA =
F/A = 0.06404 slugf/slugaor less to prevent choked flow at the exit
Answer:
M = 281.25 lb*ft
Explanation:
Given
W<em>man</em> = 150 lb
Weight per linear foot of the boat: q = 3 lb/ft
L = 15.00 m
M<em>max</em> = ?
Initially, we have to calculate the Buoyant Force per linear foot (due to the water exerts a uniform distributed load upward on the bottom of the boat):
∑ Fy = 0 (+↑) ⇒ q'*L - W - q*L = 0
⇒ q' = (W + q*L) / L
⇒ q' = (150 lb + 3 lb/ft*15 ft) / 15 ft
⇒ q' = 13 lb/ft (+↑)
The free body diagram of the boat is shown in the pic.
Then, we apply the following equation
q(x) = (13 - 3) = 10 (+↑)
V(x) = ∫q(x) dx = ∫10 dx = 10x (0 ≤ x ≤ 7.5)
M(x) = ∫10x dx = 5x² (0 ≤ x ≤ 7.5)
The maximum internal bending moment occurs when x = 7.5 ft
then
M(7.5) = 5(7.5)² = 281.25 lb*ft