It was in Texas on September 8, 1900.
Answer:
b. Relates the electric field at points on a closed surface to the net charge enclosed by that surface
Explanation:
Gauss's law states that the flux of certain fields through a closed surface is proportional to the magnitude of the sources of that field within the same surface. The electric flux expresses the measure of the electric field that crosses a certain surface. Therefore, the electric field on a closed surface is proportional to the net charge enclosed by that surface.
Answer:
Explanation:
We know that Impulse = force x time
impulse = change in momentum
change in momentum = force x time
Force F = .285 t -.46t²
Since force is variable
change in momentum = ∫ F dt where F is force
= ∫ .285ti - .46t²j dt
= .285 t² / 2i - .46 t³ / 3 j
When t = 1.9
change in momentum = .285 x 1.9² /2 i - .46 x 1.9³ / 3 j
= .514i - 1.05 j
final momentum
= - 3.1 i + 3.9j +.514i - 1.05j
= - 2.586 i + 2.85j
x component = - 2.586
y component = 2.85
Answer: 585 J
Explanation:
We can calculate the work done during segment A by using the work-energy theorem, which states that the work done is equal to the gain in kinetic energy of the object:

where Kf is the final kinetic energy and Ki the initial kinetic energy. The initial kinetic energy is zero (because the initial velocity is 0), while the final kinetic energy is

The mass is m=1.3 kg, while the final velocity is v=30 m/s, so the work done is:

When spring times comes around you ever be like, "k." If you feel like that every year during spring then there you go