Fluorite is harder than gypsum but softer than apatite. Thus, the correct option is B.
<h3>What is the hardness of any element?</h3>
The hardness of any element may be defined as the capability of a material to oppose the process of deformation and remains in actual shape precisely.
According to the table of hardness scales by Mohs, the increasing order of given hardness of given elements is as follows:
Gypsum < Fluorite < Apatite.
Therefore, Fluorite is harder than gypsum but softer than apatite. Thus, the correct option is B.
To learn more about the Hardness of elements, refer to the link:
brainly.com/question/23721736
#SPJ1
Answer: Option (d) is the correct answer.
Explanation:
According to Bronsted-Lowry, species which donate a proton are known as acid. The species which accept a proton are known as a base.
In the given reaction, acids and bases are as follows.
HI +
+ 
Acid Base Conjugate acid Conjugate base
Therefore, the acid HI loses a proton to form a conjugate base that is
.
Thus, we can conclude that HI and
is an acid conjugate base pair.
Answer:
a)there would be no reaction
Explanation:
The activity series of metals has many functions. The one applicable to this problem is that it can be used to determine whether a reaction will occur or not. Also, based on the positions of metals in the series, we can know how reactive a metal is compared to another.
In a single displacement reaction, a metal replaces another metal based on their position on the activity series. Metals that are higher in the series are generally more reactive than others below them and so will displace them.
Would aluminum replace magnesium to form a new compound or would there be no reaction?
Magnesium is higher than aluminum in the activity series. Therefore it is more reactive than aluminum. No reaction will occur.
Answer:
hope it helps you...
Explanation:
acid rain is harmful for crop,and soil.
Answer:
NO2 is the molecular formula of nitrogen Oxide
Explanation:
Correct question
An oxide of nitrogen contain its own volume of nitrogen
its vapour dentity is 23. Find the molecular formula
Of nitrogen Oxide
Solution
As we know
Molecular Weight is equal to two times the vapour density
Hence, the molecular weight of Oxide of nitrogen is 2 * 22 = 44
Molecular weight of Oxide of nitrogen is the sum of atomic weight of nitrogen and oxygen
Molecular weight of Oxide of nitrogen = 14 + 16 *Y
14 + 16 *Y = 46
Y = 2
Hence, the formula is NO2