(1,500 meters) x (1 sec / 330 meters) = (4 and 18/33) seconds
(4.55 sec, rounded)
I would make a flying car
Answer:
1.144 A
Explanation:
given that;
the length of the wire = 2.0 mm
the diameter of the wire = 1.0 mm
the variable resistivity R = ![\rho (x) =(2.5*10^{-6})[1+(\frac{x}{1.0 \ m})^2]](https://tex.z-dn.net/?f=%5Crho%20%28x%29%20%3D%282.5%2A10%5E%7B-6%7D%29%5B1%2B%28%5Cfrac%7Bx%7D%7B1.0%20%5C%20m%7D%29%5E2%5D)
Voltage of the battery = 17.0 v
Now; the resistivity of the variable (dR) can be expressed as = 
![dR = \frac{(2.5*10^{-6})[1+(\frac{x}{1.0})^2]}{\frac{\pi}{4}(10^{-3})^2}](https://tex.z-dn.net/?f=dR%20%3D%20%5Cfrac%7B%282.5%2A10%5E%7B-6%7D%29%5B1%2B%28%5Cfrac%7Bx%7D%7B1.0%7D%29%5E2%5D%7D%7B%5Cfrac%7B%5Cpi%7D%7B4%7D%2810%5E%7B-3%7D%29%5E2%7D)
Taking the integral of both sides;we have:
![\int\limits^R_0 dR = \int\limits^2_0 3.185 \ [1+x^2] \ dx](https://tex.z-dn.net/?f=%5Cint%5Climits%5ER_0%20%20dR%20%3D%20%5Cint%5Climits%5E2_0%203.185%20%5C%20%5B1%2Bx%5E2%5D%20%5C%20dx)
![R = 3.185 [x + \frac {x^3}{3}}]^2__0](https://tex.z-dn.net/?f=R%20%3D%203.185%20%5Bx%20%2B%20%5Cfrac%20%7Bx%5E3%7D%7B3%7D%7D%5D%5E2__0)
![R = 3.185 [2 + \frac {2^3}{3}}]](https://tex.z-dn.net/?f=R%20%3D%203.185%20%5B2%20%2B%20%5Cfrac%20%7B2%5E3%7D%7B3%7D%7D%5D)
R = 14.863 Ω
Since V = IR


I = 1.144 A
∴ the current if this wire if it is connected to the terminals of a 17.0V battery = 1.144 A
Answer:
BA
0

Explanation:
B = Magnetic field
A = Area
= Angle
t = Time taken
Before rotation the magnetic flux is given by

Magnetic flux is BA
After rotation the magnetic flux is given by

The magnetic flux is 0
Magnitude of emf is given by

The magnitude of the average emf induced in the entire coil is 
When the forces acting on a body are balanced, their effect
\on the body's motion is the same as if no forces at all are
acting on it, and its velocity can't change. It continues moving
in a straight line at constant speed (which may be zero).