Answer:
the only one that meets the requirements is option C .
Explanation:
The tolerance of a quantity is the maximum limit of variation allowed for that quantity.
 
To find it we must have the value of the magnitude, its closest value is the average value, this value can be given or if it is not known it is calculated with the formula
          x_average = ∑  / n
 / n
The tolerance or error is the current value over the mean value per 100
          Δx₁ = x₁ / x_average
          tolerance = | 100 -Δx₁  100 |
bars indicate absolute value
let's look for these values for each case
a)
     x_average = (2.1700000+ 2.258571429) / 2
     x_average = 2.2142857145
fluctuation for x₁
         Δx₁ = 2.17000 / 2.2142857145
         Tolerance = 100 - 97.999999991
         Tolerance = 2.000000001%
 fluctuation x₂
         Δx₂ = 2.258571429 / 2.2142857145
         Δx2 = 1.02
         tolerance = 100 - 102.000000009
         tolerance 2.000000001%
b) 
     x_average = (2.2 + 2.29) / 2
     x_average = 2,245
fluctuation x₁
          Δx₁ = 2.2 / 2.245
          Δx₁ = 0.9799554
          tolerance = 100 - 97,999
          Tolerance = 2.00446%
fluctuation x₂
           Δx₂ = 2.29 / 2.245
           Δx₂ = 1.0200445
           Tolerance = 2.00445%
c)
    x_average = (2.211445 +2.3) / 2
    x_average = 2.2557225
        Δx₁ = 2.211445 / 2.2557225 = 0.9803710
        tolerance = 100 - 98.0371
        tolerance = 1.96%
        Δx₂ = 2.3 / 2.2557225 = 1.024624
        tolerance = 100 -101.962896
        tolerance = 1.96%
d)
    x_average = (2.20144927 + 2.29130435) / 2
    x_average = 2.24637681
        Δx₁ = 2.20144927 / 2.24637681 = 0.98000043
        tolerance = 100 - 98.000043
        tolerance = 2.000002%
        Δx₂ = 2.29130435 / 2.24637681 = 1.0200000017
        tolerance = 2.0000002%
e)
    x_average = (2 +2,3) / 2
    x_average = 2.15
    Δx₁ = 2 / 2.15 = 0.93023
    tolerance = 100 -93.023
    tolerance = 6.98%
    Δx₂ = 2.3 / 2.15 = 1.0698
    tolerance = 6.97%
Let's analyze these results, the result E is clearly not in the requested tolerance range, the other values may be within the desired tolerance range depending on the required precision, for the high precision of this exercise the only one that meets the requirements is option C .