1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
MrRa [10]
3 years ago
8

What Happens If A Sonic Boom Is Created?

Engineering
1 answer:
Volgvan3 years ago
8 0

Answer:

Explanation:

A sonic boom is a loud sound kind of like an explosion. It's caused by shock waves created by any object that travels through the air faster than the speed of sound. Sonic booms create huge amounts of sound energy. When an object moves through the air, it makes pressure waves in front of and behind it.

You might be interested in
Consider the circuit below where R1 = R4 = 5 Ohms, R2 = R3 = 10 Ohms, Vs1 = 9V, and Vs2 = 6V. Use superposition to solve for the
VladimirAG [237]

Answer:

The value of v2 in each case is:

A) V2=3v for only Vs1

B) V2=2v for only Vs2

C) V2=5v for both Vs1 and Vs2

Explanation:

In the attached graphic we draw the currents in the circuit. If we consider only one of the batteries, we can consider the other shorted.

Also, what the problem asks is the value V2 in each case, where:

V_2=I_2R_2=V_{ab}

If we use superposition, we passivate a battery and consider the circuit affected only by the other battery.

In the first case we can use an equivalent resistance between R2 and R3:

V_{ab}'=I_1'R_{2||3}=I_1'\cdot(\frac{1}{R_2}+\frac{1}{R_3})^{-1}

And

V_{S1}-I_1'R_1-I_1'R_4-I_1'R_{2||3}=0 \rightarrow I_1'=0.6A

V_{ab}'=I_1'R_{2||3}=3V=V_{2}'

In the second case we can use an equivalent resistance between R2 and (R1+R4):

V_{ab}''=I_3'R_{2||1-4}=I_3'\cdot(\frac{1}{R_2}+\frac{1}{R_1+R_4})^{-1}

And

V_{S2}-I_3'R_3-I_3'R_{2||1-4}=0 \rightarrow I_3'=0.4A

V_{ab}''=I_3'R_{2||1-4}=2V

If we consider both batteries:

V_2=I_2R_2=V_{ab}=V_{ab}'+V_{ab}''=5V

7 0
3 years ago
Twenty-five wooden beams were ordered or a construction project. The sample mean and he sample standard deviation were measured
aksik [14]

Answer:

Correct option: B. 90%

Explanation:

The confidence interval is given by:

CI = [\bar{x} - z\sigma_{\bar{x}} , \bar{x}+z\sigma_{\bar{x}} ]

If \bar{x} is 190, we can find the value of z\sigma_{\bar{x}}:

\bar{x} - z\sigma_{\bar{x}}  = 188.29

190 - z\sigma_{\bar{x}}  = 188.29

z\sigma_{\bar{x}}  = 1.71

Now we need to find the value of \sigma_{\bar{x}}:

\sigma_{\bar{x}} = s / \sqrt{n}

\sigma_{\bar{x}} = 5/ \sqrt{25}

\sigma_{\bar{x}} = 1

So the value of z is 1.71.

Looking at the z-table, the z value that gives a z-score of 1.71 is 0.0436

This value will occur in both sides of the normal curve, so the confidence level is:

CI = 1 - 2*0.0436 = 0.9128 = 91.28\%

The nearest CI in the options is 90%, so the correct option is B.

4 0
3 years ago
Consider a modification of the air-standard Otto cycle in which the isentropic compression and expansion processes are each repl
Ulleksa [173]

Answer:

The answers to the question are

(1) Process 1 to 2

W = 295.16 kJ/kg

Q = -73.79 kJ/kg

(2) Process 2 to 3

W = 0

Q = 1135.376 kJ/kg

(3) Process 3 to 4

W = -1049.835 kJ/kg

Q = 262.459 kJ/kg

(4) Process 4 to 3

W=0

Q = -569.09 kJ/kg

(b) The thermal efficiency = 49.9 %

(c) The mean effective pressure is 9.44 bar

Explanation:

(a) Volume compression ratio \frac{v_1}{v_2}  = 10

Initial pressure p₁ = 1 bar

Initial temperature, T₁ = 310 K

cp = 1.005 kJ/kg⋅K

Temperature T₃ = 2200 K from the isentropic chart of the Otto cycle

For a polytropic process we have

\frac{p_1}{p_2}  = (\frac{v_2}{v_1} )^n Therefore p₂ = p₁ ÷ (\frac{v_2}{v_1} )^n = (1 bar) ÷ (\frac{1}{10} )^{1.3} = 19.953 bar

Similarly for a polytropic process we have

\frac{T_1}{T_2}  = (\frac{v_2}{v_1} )^{n-1} or T₂ = T₁ ÷ (\frac{v_2}{v_1} )^{n-1} = \frac{310}{0.1^{0.3}} = 618.531 K

The molar mass of air is 28.9628 g/mol.

Therefore R = \frac{8.3145}{28.9628} = 0.287 kJ/kg⋅K

cp = 1.005 kJ/kg⋅K Therefore cv = cp - R =  1.005- 0.287 = 0.718 kJ/kg⋅K

1). For process 1 to 2 which is polytropic process we have

W = \frac{R(T_2-T_1)}{n-1} = \frac{0.287(618.531-310)}{1.3 - 1}= 295.16 kJ/kg

Q =(\frac{n-\gamma}{\gamma - 1} )W = (\frac{1.3-1.4}{1.4-1} ) 295.16 kJ/kg = -73.79 kJ/kg

W = 295.16 kJ/kg

Q = -73.79 kJ/kg

2). For process 2 to 3 which is reversible constant volume heating we have

W = 0 and Q = cv×(T₃ - T₂) = 0.718× (2200-618.531) = 1135.376 kJ/kg

W = 0

Q = 1135.376 kJ/kg

3). For process 3 to 4 which is polytropic process we have

W = \frac{R(T_4-T_3)}{n-1} = Where T₄ is given by  \frac{T_4}{T_3}  = (\frac{v_3}{v_4} )^{n-1} or T₄ = T₃ ×0.1^{0.3}

= 2200 ×0.1^{0.3}  T₄ = 1102.611 K

W =  \frac{0.287(1102.611-2200)}{1.3 - 1}= -1049.835 kJ/kg

and Q = 262.459 kJ/kg

W = -1049.835 kJ/kg

Q = 262.459 kJ/kg

4). For process 4 to 1 which is reversible constant volume cooling we have

W = 0 and Q = cv×(T₁ - T₄) = 0.718×(310 - 1102.611) = -569.09 kJ/kg

W=0

Q = -569.09 kJ/kg

(b) The thermal efficiency is given by

\eta = 1-\frac{T_4-T_1}{T_3-T_2} =1-\frac{1102.611-310}{2200-618.531} = 0.499 or 49.9 % Efficient

(c) The mean effective pressure is given by

p_{m}  = \frac{p_1r[(r^{n-1}-1)(r_p-1)]}{ (n-1)(r-1)}  where r = compression ratio and r_p = \frac{p_3}{p_2}

However p₃ = \frac{p_2T_3}{T_2} =\frac{(19.953)(2200)}{618.531} =70.97 atm

r_p = \frac{p_3}{p_2} = \frac{70.97}{19.953}  = 3.56

Therefore p_m =\frac{1*10*[(10^{0.3}-1)(3.56-1)]}{0.3*9} = 9.44 bar

Please find attached generalized diagrams of the Otto cycle

8 0
3 years ago
You are designing the access control policies for a Web-based retail store. Customers access the store via the Web, browse produ
PolarNik [594]

Answer:

Object-Oriented Software Engineering Using UML, Patterns, and Java, 3e, shows readers how to use both the principles of software engineering and the practices of various object-oriented tools, processes, and products.

3 0
2 years ago
True/False
sweet [91]

Answer:

false jdbebheuwowjwjsisidhhdd

7 0
3 years ago
Other questions:
  • How an AK 47 gun was works​
    14·1 answer
  • In the combination of resistors above, consider the 1.50 µΩ and 0.75 µΩ. How can you classify the connection between these two r
    6·1 answer
  • Given a series of numbers as input, add them up until the input is 10 and print the total. Do not add the final 10. For example,
    7·1 answer
  • A signal containing both a 5k Hz and a 10k Hz component is passed through a low-pass filter with a cutoff frequency of 4k Hz. Wh
    9·1 answer
  • For a brass alloy, the following engineering stresses produce the corresponding plastic engineering strains prior to necking:
    9·1 answer
  • An intelligence signal is amplified by a 65% efficient amplifier before being combined with a 250W carrier to generate an AM sig
    5·1 answer
  • Chemical engineers determine how to transport chemicals.<br> O True<br> False
    8·2 answers
  • Why is personal development necessary based activity success life and career​
    11·1 answer
  • You insert a dielectric into an air-filled capacitor. How does this affect the energy stored in the capacitor?.
    12·1 answer
  • A common boundary-crossing problem for engineers is when their home country' values come into sharp contrast with the host count
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!