C it would be c because that has more and the others have less
Answer:

Explanation:
First, we will find actual properties at given inlet and outlet states by the use of steam tables:
AT INLET:
At 4MPa and 350°C, from the superheated table:
h₁ = 3093.3 KJ/kg
s₁ = 6.5843 KJ/kg.K
AT OUTLET:
At P₂ = 125 KPa and steam is saturated in vapor state:
h₂ =
= 2684.9 KJ/kg
Now, for the isentropic enthalpy, we have:
P₂ = 125 KPa and s₂ = s₁ = 6.5843 KJ/kg.K
Since s₂ is less than
and greater than
at 125 KPa. Therefore, the steam is in a saturated mixture state. So:

Now, we will find
(enthalpy at the outlet for the isentropic process):

Now, the isentropic efficiency of the turbine can be given as follows:

Answer:
awnsers should be added to know to show additional
Answer:
Amount of concrete need to make slab = 1,500 feet³
Explanation:
Given:
Length of slab = 50 feet
Width of slab = 30 feet
Height of slab = 1 feet
Find:
Amount of concrete need to make slab
Computation;
Amount of concrete need to make slab = Volume of cuboid
Volume of cuboid = (l)(b)(h)
Amount of concrete need to make slab = (50)(30)(1)
Amount of concrete need to make slab = 1,500 feet³
Answer:
(a) 2.39 MPa (b) 3.03 kJ (c) 3.035 kJ
Explanation:
Solution
Recall that:
A 10 gr of air is compressed isentropically
The initial air is at = 27 °C, 110 kPa
After compression air is at = a450 °C
For air, R=287 J/kg.K
cv = 716.5 J/kg.K
y = 1.4
Now,
(a) W efind the pressure on [MPa]
Thus,
T₂/T₁ = (p₂/p₁)^r-1/r
=(450 + 273)/27 + 273) =
=(p₂/110) ^0.4/1.4
p₂ becomes 2390.3 kPa
So, p₂ = 2.39 MPa
(b) For the increase in total internal energy, is given below:
ΔU = mCv (T₂ - T₁)
=(10/100) (716.5) (450 -27)
ΔU =3030 J
ΔU =3.03 kJ
(c) The next step is to find the total work needed in kJ
ΔW = mR ( (T₂ - T₁) / k- 1
(10/100) (287) (450 -27)/1.4 -1
ΔW = 3035 J
Hence, the total work required is = 3.035 kJ