Work, Kinetic Energy and Potential Energy
6.1 The Important Stuff 6.1.1 Kinetic Energy
For an object with mass m and speed v, the kinetic energy is defined as K = 1mv2
2
(6.1)
Kinetic energy is a scalar (it has magnitude but no direction); it is always a positive number; and it has SI units of kg · m2/s2. This new combination of the basic SI units is
known as the joule:
As we will see, the joule is also the unit of work W and potential energy U. Other energy
1joule = 1J = 1 kg·m2 (6.2) s2
units often seen are:
6.1.2 Work
1erg=1g·cm2 =10−7J 1eV=1.60×10−19J s2
When an object moves while a force is being exerted on it, then work is being done on the object by the force.
If an object moves through a displacement d while a constant force F is acting on it, the force does an amount of work equal to
W =F·d=Fdcosφ (6.3)
where φ is the angle between d and F.
Answer:
I think c is correct options....
Explanation:
The resistance of the wire increases with increase in temperature. The resistance does not depend on the weight of the wire. Therefore, the correct option is weight.
Pretty much combustion is the reaction of oxygen to a compound that contains carbon and hydrogen. That's why it creates CO2 and H2O
Answer:
<u>411.84 kg m/s</u>
Explanation:
Formula :
<u>Momentum = mass × velocity</u>
<u />
=========================================================
Given :
⇒ mass = 26.4 kg
⇒ velocity = 15.6 m/s
=========================================================
Solving :
⇒ Momentum = 26.4 × 15.6
⇒ Momentum = <u>411.84 kg m/s</u>
Well uhhh if you’re a sub watcher I totally recommend Classroom of the Elite- it’s in crunchy roll, or Soul eater- that’s what I’m currently watching. Or Aot Junior- it’s on Hulu.