Answer:
a. same
b. less
c. same
d. same?
Explanation:
the mass will always be the same no matter where it is. the weight however depends on the gravity.
Answer:
yyyggggggggggggggthhgggggyyyyy
Explanation:
yyygggggggggggg
X=1/2 at^2
3.1=1/2 a *0.64
a=9.68
v=at
v=0.8*9.6875=7.75
It's been a while since I've studied this, but my answers would be:
13. 5730 years. The half-life of a substance is the amount of time it takes for half of it to decay, and, according to the graph, half of the substance remained at 5730 years.
14. 10740 years. According to the graph, only 25% of the carbon remained after 10740 years.
15. 15 atoms. According to the graph, only 12.5% of the carbon remained after 16110 years. 12.5% of 120 atoms is 15 atoms.
16. 1600 atoms. According to the graph, if a sample of carbon is 10740 years old, only 25% of it remains. To find the original amount, multiply the current amount by (100% / 25%), which equals 4. So, 4. 400 atoms * 4 = 1600 atoms is the original amount.
Answer:
14657.32 J
Explanation:
Given Parameters ;
Number of moles mono atomic gas A , n
1 = 4
.2 mol
Number of moles mono atomic gas B , n
2 = 3.2mol
Initial energy of gas A ,
K
A = 9500 J
Thermal energy given by gas A to gas B ,
Δ
K = 600
J
Gas constant
R =
8.314 J
/
molK
Let K
B be the initial energy of gas B.
Let T be the equilibrium temperature of the gas after mixing.
Then we can write the energy of gas A after mixing as
(3/2)n1RT = KA - ΔK
⟹ (3/2) x 4.2 x 8.314 x T = 9500 - 600
T = (8900 x 3 )/(2x4.2x8.314) = 382.32 K
Energy of the gas B after mixing can be written as
(3/2)n2RT = KB + ΔK
⟹ (3/2) x 3.2 x 8.314 x 382.32 = KB + 600
⟹ KB = [(3/2) x 3.2 x 8.314 x 382.32] - 600
⟹ KB = 14657.32 J