a) 32 kg m/s
Assuming the spring is initially at rest, the total momentum of the system before the collision is given only by the momentum of the bowling ball:

The ball bounces off at the same speed had before, but the new velocity has a negative sign (since the direction is opposite to the initial direction). So, the new momentum of the ball is:

The final momentum after the collision is the sum of the momenta of the ball and off the spring:

where
is the momentum of the spring. For the conservation of momentum,

b) -32 kg m/s
The change in momentum of bowling ball is given by the difference between its final momentum and initial momentum:

c) 64 N
The change in momentum is equal to the product between the average force and the time of the interaction:

Since we know
, we can find the magnitude of the force:

The negative sign simply means that the direction of the force is opposite to the initial direction of the ball.
d) The force calculated in the previous step (64 N) is larger than the force of 32 N.
I believe the answer is #4. u can always ask google if u believe that's the wrong answer :)
Answer:
E=72000J or 72kj
Explanation:
The formula is E=pt you need to convert your t from minutes to seconds before proceeding
Answer:
e3f3ewfeewfewgwgewggegegeggegeggege
Explanation:
The question to the above information is;
What is the best use of an atomic model to explain the charge of the particles in Thomson's beams?
Answer;
An atom's smaller negative particles are at a distance from the central positive particles, so the negative particles are easier to remove.
Explanation;
-Atoms are comprised of a nucleus consisting of protons (red) and neutrons (blue). The number of orbiting electrons is the same as the number of protons and is termed the "atomic number" of the element.
J.J. Thomson discovered the electron. Atoms are neutral overall, therefore in Thomson’s ‘plum pudding model’:
- atoms are spheres of positive charge
- electrons are dotted around inside