We have the equation for electric field E = kQ/
Where k is a constant, Q is the charge of source and d is the distance from center.
In this case E is inversely proportional to 
So, 
= 485 N/C
= 0.208 cm
= 0.620 cm
= ?

= 
= 53.20 N/C
Answer:
B. The same on the moon.
Explanation:
The density of an object is the ratio of the mass contained by the object to the volume occupied by that mass.

When the object is taken from the earth to anywhere in the universe, its mass remains constant. The dimensions of the object and hence its volume also remains constant anywhere in the universe.
Therefore, the density of the object will also remain the same as it depends upon the mass and the volume of the object.
So, the correct option is:
<u>B. The same on the moon.</u>
Because you need to have a guess to know what to argue or explain in your experiment
Most ejections originate from active regions on the Sun's surface, such as groupings of sunspots associated with frequent flares. These regions have closed magnetic field lines, in which the magnetic field strength is large enough to contain the plasma.
Answer:
2023857702.507m
Explanation:

recall from newton's law of gravitation
G=gravitational constant
mshew=50g
melephant=5*10^3kg
rearth=radius of the earth 6400km or 6400000m
mearth= masss of the earth
Gm(shrew)m(earth)/r(earth)^2 = Gm(elephant)m(earth)/r^2
strike out the left hand side and right hand side variables
m(shrew)/r(earth)^2 = m(elephant)/r^2
r^2 = m(elephant).r(earth)^2 / m(shrew) .........make r^2 the subject of the equation
r^2=
r^2=40960000000000
r=2023857702.507m