Answer:
To establish this relationship we must examine the potentials that these forces create. The electrical potential is described by
Ve = k q / r
The potential for strong nuclear force is
Vn (r) = - gs / 4pir exp (-mrc / h)
Where gs is the stacking constant and r the distance between the nucleons,
We can compare these potentials where the force is derived from the relationship
E = -dU / dr
F = q E
Explanation:
Answer:
a. t = 1.43 s
b. d = 7.88 m
Explanation:
a. The time of flight can be found using the following equation:

Where:
: is the final height = -10 m
: is the initial height = 0
: is the initial speed in the vertical direction = 0
g: is the acceleration due to gravity = 9.81 m/s²
By solving the above equation for "t" we have:

Hence, the ball will hit the ground in 1.43 s.
b. The distance in the horizontal direction can be found as follows:

Where:
x₀: is the initial position in the horizontal direction = 0
a: is the acceleration in the horizontal direction = 0 (it is moving at constant speed)

Therefore, the ball will travel 7.88 m before it hits the ground.
I hope it helps you!
Answer:
<em>Hydrogen bond is the attractive force between the hydrogen attached electronegative atom </em>
Explanation:
Answer:
176.58Watts
Explanation:
Power= work done /time
Where mass(m)=60kg
Height (h) =3m
Time(s)=10s
Force of gravity = 9.81m/s^2
Power=mgh/t
Power= (60kg) * (9.81m/s^2) * (3m)/10s
Power= 176.58Watts