1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
serg [7]
1 year ago
15

sandra is riding a bice at 10.0 meters/second. she slows down to 2.0 meters/second in 10 seconds. her acceleration is blank mete

rs/seconds^2
Physics
1 answer:
MrRa [10]1 year ago
8 0

Explanation:

a =  \frac{v - v _{i} }{t}

Her intial velocity is 10

Her final velocity is 2

Time is 10 seconds.

a =  \frac{2 - 10}{10}

a =  -  \frac{4}{5}

You might be interested in
PHYSICS CIRCUIT QUESTION PLEASE HELP!! 20 Points!
dimulka [17.4K]
This really calls for a blackboard and a hunk of chalk, but
I'm going to try and do without.

If you want to understand what's going on, then PLEASE
keep drawing visible as you go through this answer, either
on the paper or else on a separate screen.

The energy dissipated by the circuit is the energy delivered by
the battery.  We'd know what that is if we knew  I₁ .  Everything that
flows in this circuit has to go through  R₁ , so let's find  I₁  first.

-- R₃ and R₄ in series make 6Ω.
-- That 6Ω in parallel with R₂ makes 3Ω.
-- That 3Ω in series with R₁ makes 10Ω across the battery.
--  I₁ is  10volts/10Ω  =  1 Ampere.

-- R1:  1 ampere through 7Ω ... V₁ = I₁ · R₁ = 7 volts .

-- The battery is 10 volts. 
    7 of the 10 appear across R₁ .
   So the other 3 volts appear across all the business at the bottom.

-- R₂:  3 volts across it = V₂. 
           Current through it is  I₂ = V₂/R₂ = 3volts/6Ω = 1/2 Amp.

-- R3 + R4:  6Ω in the series combination
                     3 volts across it
                     Current through it is I = V₂/R = 3volts/6Ω = 1/2 Ampere

--  Remember that the current is the same at every point in
a series circuit.  I₃  and  I₄  must be the same 1/2 Ampere,
because there's no place in the branch where electrons can
be temporarily stored, no place for them to leak out, and no
supply of additional electrons.

-- R₃:  1/2 Ampere through it = I₃ .
           1/2 Ampere through 2Ω ... V₃ = I₃ · R₃ = 1 volt

-- R₄:  1/2 Ampere through it = I₄
           1/2 Ampere through 4Ω ... V₄ = I₄ · R₄ = 2 volts

Notice that  I₂  is 1/2 Amp, and (I₃ , I₄) is also 1/2 Amp.
So the sum of currents through the two horizontal branches is 1 Amp,
which exactly matches  I₁  coming down the side, just as it should.
That means that at the left side, at the point where R₁, R₂, and R₃ all
meet, the amount of current flowing into that point is the same as the
amount flowing out ... electrons are not piling up there.

Concerning energy, we could go through and calculate the energy
dissipated by each resistor and then addum up.  But why bother ?
The energy dissipated by the resistors has to come from the battery,
so we only need to calculate how much the battery is supplying, and
we'll have it.

The power supplied by the battery  = (voltage) · (current)

                                                         =  (10 volts) · (1 Amp) = 10 watts .

"Watt" means "joule per second".
The resistors are dissipating 10 joules per second,
and the joules are coming from the battery.

             (30 minutes) · (60 sec/minute)  =  1,800 seconds

             (10 joules/second) · (1,800 seconds)  =  18,000 joules  in 30 min

The power (joules per second) dissipated by each individual resistor is

                       P  =  V² / R
             or
                       P  =  I² · R ,

whichever one you prefer.  They're both true.

If you go through the 4 resistors, calculate each one, and addum up, you'll
come out with the same 10 watts / 18,000 joules total. 

They're not asking for that.  But if you did it and you actually got the same
numbers as the battery is supplying, that would be a really nice confirmation
that all of your voltages and currents are correct.
7 0
2 years ago
A rotating fan completes 1200 revolutions every minute. consider the tip of a blade, at a radius of 0.19 m. through what distanc
ser-zykov [4K]

The tip of the fan moves through the outer side of the circle.

So it moves a distance of perimeter of circle in one revolution.

Perimeter of circle = 2\pir, where r is the radius of circle.

In this case radius of circular motion = 0.19 meter

So perimeter of circle = 2\pi*0.19 = 0.38\pi = 1.194 m

So distance does the tip move in one revolution = 1.194 meter

5 0
3 years ago
Water is boiled at sea level in a coffeemaker equipped with an immersion-type electric heating element. The coffee maker contain
Luden [163]

Answer:

P=1362\ W

t'=251.659\ s is time required to heat to boiling point form initial temperature.

Explanation:

Given:

initial temperature of water, T_i=18^{\circ}C

time taken to vapourize half a liter of water, t=18\ min=1080\ s

desity of water, \rho=1\ kg.L^{-1}

So, the givne mass of water, m=1\ kg

enthalpy of vaporization of water, h_{fg}=2256.4\times 10^{-3}\ J.kg^{-1}

specific heat of water, c=4180\ J.kg^{-1}.K^{-1}

Amount of heat required to raise the temperature of given water mass to 100°C:

Q_s=m.c.\Delta T

Q_s=1\times 4180\times (100-18)

Q_s=342760\ J

Now the amount of heat required to vaporize 0.5 kg of water:

Q_v=m'\times h_{fg}

where:

m'=0.5\ kg= mass of water vaporized due to boiling

Q_v=0.5\times 2256.4

Q_v=1.1282\times 10^{6}\ J

Now the power rating of the boiler:

P=\frac{Q_s+Q_v}{t}

P=\frac{342760+1128200}{1080}

P=1362\ W

Now the time required to heat to boiling point form initial temperature:

t'=\frac{Q_s}{P}

t'=\frac{342760}{1362}

t'=251.659\ s

6 0
3 years ago
A simple model of a hydrogen atom is a positive point charge +e (representing the proton) at the center of a ring of radius a wi
Norma-Jean [14]

Answer:

Now e is due to the ring at a

So

We say

1/4πEo(ea/ a²+a²)^3/2

= 1/4πEo ea/2√2a³

So here E is faced towards the ring

Next is E due to a point at the centre

So

E² = 1/4πEo ( e/a²)

Finally we get the total

Et= E²-E

= e/4πEo(2√2-1/2√2)

So the direction here is away from the ring

8 0
3 years ago
What type of heat transfer is used in a restaurant that uses ovens with fans inside?
Marina CMI [18]

convection


please mark brainliest any other problems or questions feel free to ask


5 0
3 years ago
Other questions:
  • What evidence do scientists have that earth has been hit by large objects like asteroids in the past
    9·1 answer
  • A capacitor charging circuit consists of a battery, an uncharged 20 μF capacitor, and a 6.0 kΩ resistor. At t = 0 s the switch i
    14·1 answer
  • What is the unit for current? <br> a. a <br> b. c <br> c. i <br> d. t
    5·1 answer
  • Why intermediate elements has negative packing fraction?
    13·1 answer
  • What would happen if guard cells in a plant stopped working
    15·1 answer
  • How many joules of heat are absorbed to raise the temperature of 435 grams of water at 1 atm from 25°c to its boiling point?
    9·1 answer
  • Felipe believes that whenever the Moon is in the position that is shown from above (top view) in Diagram A, the Moon always look
    9·1 answer
  • What happens to the strength of an electromagnet if the number of loops of wire is increased?
    13·1 answer
  • Give me 4 ways waves can transfer energy?
    9·1 answer
  • a force of 1.35 newtons is required to accelerate a book by 1.5 meters/second2 along a frictionless surface. what is the mass of
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!