Answer:
K = [ HOCl ] . [HgO. HgCl2] / [Cl2]^2 [H2O] [HgO]^2
Explanation:
The law of Mass Action states that, at constant temperature, the rate of reaction is proportional to the active masses of each of the reactants.
The reaction above is a reversible reaction and the law of mass action also applies to it.
The rate of reaction from left-to-right reaction = r1 = k. [Cl2]^2 [H2O] [HgO]^2
Rate of reaction from right - to - left r2 = k. [hocl]^2 [HgO . hgcl2]
Then at equilibrium,
r1 = r2
k1/k2 = [HOCl ]^2 [HgO. HgCl2] / [Cl2]^2 [H2O] [HgO]^2 = K
where K is the equilibrium constant for the reaction.
It is always half of what the o2 is
Answer:
0.57 moles (NH4)3PO4 (2 sig. figs.)
Explanation:
To quote, J.R.
"Note: liquid ammonia (NH3) is actually aqueous ammonium hydroxide (NH4OH) because NH3 + H2O -> NH4OH.
H3PO4(aq) + 3NH4OH(aq) ==> (NH4)3PO4 + 3H2O
Assuming that H3PO4 is not limiting, i.e. it is present in excess
1.7 mol NH4OH x 1 mole (NH4)3PO4/3 moles NH4OH = 0.567 moles = 0.57 moles (NH4)3PO4 (2 sig. figs.)"
Answer:
11 g
Explanation:
1 mole of carbon dioxide =44 g
therefore for 0.25 mole = x
x = 44 × 0.25
x = 11.00g
Answer:
Acetic acid is a weak monoprotic acid.
In aqueous solution it has a pKa value of 4.76.
It conjugate base is acetate (CH3COO-) A 1.0m
solution ( about the concentration of domestic vinegar) has pH of 2.4, *indicating that merely
0.4% of the acetic acid molecules are dissociated.
" HOPE IT HELPS YOU "
" MARK MY ANSWER AS BRANLIST ANSWER "