Complete Question
Part of the question is shown on the first uploaded image
The rest of the question
What is (Fnet3)x, the x-component of the net force exerted by these two charges on a third charge q3 = 55.0 nC placed between q1 and q2 at x3 = -1.220 m ? Your answer may be positive or negative, depending on the direction of the force. Express your answer numerically in newtons to three significant figures.
Answer:
The net force exerted on the third charge is
Explanation:
From the question we are told that
The third charge is 
The position of the third charge is 
The first charge is 
The position of the first charge is 
The second charge is 
The position of the second charge is
The distance between the first and the third charge is


The force exerted on the third charge by the first is

Where k is the coulomb's constant with a value 
substituting values
The distance between the second and the third charge is


The force exerted on the third charge by the first is mathematically evaluated as
substituting values

The net force is
substituting values

The answer to this is Protostar.
This is a process where it is gathering mass from its parent molecular cloud. Its a very young star meaning, the star was now born.
Hope this helped :)
Have a great day
Answer:
Explanation below.
Explanation:
It should be understood that transparency is caused through or by the transmission of light waves. This means that, If or when the energy known as the vibrational energy of a light wave is passed through the object, then the object appears clear, or transparent. And when or If the energy only causes vibrations in the surface before reflecting off the object, then the object will appear opaque, that is nontransparent.
That statement is true.
There are several definitions about transformation called translation, but the key idea is the gliding or sliding of every point in the plane the same direction.
Hope this helps
Explanation:
Formula which holds true for a leans with radii
and
and index refraction n is given as follows.
Since, the lens is immersed in liquid with index of refraction
. Therefore, focal length obeys the following.
and,
or,
= 32.4 cm
Using thin lens equation, we will find the focal length as follows.

Hence, image distance can be calculated as follows.


= 47.9 cm
Therefore, we can conclude that the focal length of the lens in water is 47.9 cm.