Answer: The gravitational
Explanation: The student is pushing the box so u have to have gravitational force so it could move
Answer:
9266 feet
Explanation:
with Earth's gravity and long it fell that's as good as it gets if there was no other factors like wind mass weight but your welcome
Answer:
q = - 93.334 nC
Explanation:
GIVEN DATA:
Radius of ring 73 cm
charge on ring 610 nC
ELECTRIC FIELD p FROM CENTRE IS AT 70 CM
E = 2000 N/C
Electric field due tor ring is guiven as
![E = \frac{KQx}{[x^2+ R^2]^{3/2}}](https://tex.z-dn.net/?f=E%20%3D%20%5Cfrac%7BKQx%7D%7B%5Bx%5E2%2B%20R%5E2%5D%5E%7B3%2F2%7D%7D)

E1 = 3714.672 N/C
electric field due to point charge q



now the eelctric charge at point P is
E = E1 + E2
solving for q
q = - 93.334 nC
Answer:
a1 = 3.56 m/s²
Explanation:
We are given;
Mass of book on horizontal surface; m1 = 3 kg
Mass of hanging book; m2 = 4 kg
Diameter of pulley; D = 0.15 m
Radius of pulley; r = D/2 = 0.15/2 = 0.075 m
Change in displacement; Δx = Δy = 1 m
Time; t = 0.75
I've drawn a free body diagram to depict this question.
Since we want to find the tension of the cord on 3.00 kg book, it means we are looking for T1 as depicted in the FBD attached. T1 is calculated from taking moments about the x-axis to give;
ΣF_x = T1 = m1 × a1
a1 is acceleration and can be calculated from Newton's 2nd equation of motion.
s = ut + ½at²
our s is now Δx and a1 is a.
Thus;
Δx = ut + ½a1(t²)
u is initial velocity and equal to zero because the 3 kg book was at rest initially.
Thus, plugging in the relevant values;
1 = 0 + ½a1(0.75²)
Multiply through by 2;
2 = 0.75²a1
a1 = 2/0.75²
a1 = 3.56 m/s²
<span>The answers are as follows:
(a) how many meters are there in 11.0 light-years?
11.0 light years ( 365 days / 1 year ) ( 24 h / 1 day ) ( 60 min / 1 h ) ( 60 s / 1 min ) ( 2.998x10^8 m/s ) = 1.04x10^17 m
(b) an astronomical unit (au) is the average distance from the sun to earth, 1.50 × 108 km. how many au are there in 11.0 light-years?
1.04x10^17 m ( 1 au / </span>1.50 × 10^8 km <span>) ( 1 km / 1000 m) = 693329.472 au
(c) what is the speed of light in au/h? au/h
</span>2.998 × 10^8 m/s ( 1 au / 1.50 × 10^8 km ) ( 1 km / 1000 m) ( 3600 s / 1 h ) = 7.1952 au/h