The maximum force of static friction is the product of normal force (P) and the coefficient of static friction (c). In a flat surface, normal force is equal to the weight (W) of the body.
P = W = mass x acceleration due to gravity
P = (0.3 kg) x (9.8 m/s²) = 2.94 kg m/s² = 2.94 N
Solving for the static friction force (F),
F = P x c
F = (2.94 N) x 0.6 = 1.794 N
Therefore, the maximum force of static friction is 1.794 N.
I think the answer A since temperature is the average kinetic energy of the molecules, so increasing temperature must increase kinetic energy
Answer:
A) reduced air pressure on the ball.
Explanation:
<span> The masses have no inertia about their own CM, and "the object" is the two masses. </span>
<span>1. Icm (at point A) = 2mr^2
hope this helps</span>